Suppr超能文献

通过添加高密度纳米颗粒使高温超导电线中的涡旋固相向上移动。

Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition.

作者信息

Miura Masashi, Maiorov Boris, Balakirev Fedor F, Kato Takeharu, Sato Michio, Takagi Yuji, Izumi Teruo, Civale Leonardo

机构信息

Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Graduate School of Science &Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.

出版信息

Sci Rep. 2016 Feb 8;6:20436. doi: 10.1038/srep20436.

Abstract

We show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 10(22)/m(3)), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.

摘要

我们展示了一种简单有效的方法,即通过增加第二相BaZrO₃纳米颗粒的密度,将涡旋不可逆线提高到非常高的磁场(60T)。采用金属有机沉积法在含有不同浓度BaZrO₃纳米颗粒的金属衬底上生长(Y₀.₇₇,Gd₀.₂₃)Ba₂Cu₃Oy薄膜。我们发现,随着BaZrO₃浓度的增加,纳米颗粒尺寸保持不变,但孪晶界密度增加。直至最高纳米颗粒浓度(n ~ 1.3 × 10²²/m³),不可逆场(Hirr)持续增加,在高达60T时没有饱和迹象,尽管涡旋数量远多于钉扎中心。我们发现了极高的Hirr,即在65K时Hirr = 30T(H||45°)和24T(H||c),在50K时为58T(H||45°)和45T(H||c)。钉扎态势的差异使涡旋固 - 液转变向上移动,增加了对功率应用有用的涡旋区域,同时保持上临界场、临界温度和电子质量各向异性不变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62d9/4745081/826a3151f5c3/srep20436-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验