Suppr超能文献

用于叹气的肽能控制回路。

The peptidergic control circuit for sighing.

作者信息

Li Peng, Janczewski Wiktor A, Yackle Kevin, Kam Kaiwen, Pagliardini Silvia, Krasnow Mark A, Feldman Jack L

机构信息

Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305.

Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095.

出版信息

Nature. 2016 Feb 18;530(7590):293-297. doi: 10.1038/nature16964. Epub 2016 Feb 8.

Abstract

Sighs are long, deep breaths expressing sadness, relief or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control centre, the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin-releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC or onto preBötC slices, induced sighing or in vitro sigh activity, whereas elimination or inhibition of either receptor reduced basal sighing, and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose that these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs.

摘要

叹息是深长的呼吸,表达悲伤、宽慰或疲惫。叹息也会每隔几分钟自发出现,以使肺泡重新充气,并且在缺氧、压力和某些精神状况下叹息会增加。在这里,我们使用分子、遗传和药理学方法来确定小鼠大脑中的一个肽能叹息控制回路。在关键的呼吸控制中心,即延髓后外侧网状核/面神经旁呼吸组(RTN/pFRG)中,小神经亚群表达蛙皮素样神经肽基因神经介素B(Nmb)或胃泌素释放肽(Grp)。这些基因投射到前包钦格复合体(preBötC),即呼吸节律发生器,该复合体在约200个神经元的重叠亚群中表达NMB和GRP受体。将任何一种神经肽引入preBötC或preBötC切片上,都会诱导叹息或体外叹息活动,而消除或抑制任何一种受体都会降低基础叹息,同时抑制两者则会消除叹息。切除表达受体的神经元会消除基础和缺氧诱导的叹息,但最初呼吸的其他方面保持完整。我们提出,这些重叠的肽能通路构成了叹息控制回路的核心,该回路整合生理和可能的情感输入,将正常呼吸转变为叹息。

相似文献

1
The peptidergic control circuit for sighing.
Nature. 2016 Feb 18;530(7590):293-297. doi: 10.1038/nature16964. Epub 2016 Feb 8.
2
Neural circuits: A circuit to sigh for.
Nat Rev Neurosci. 2016 Apr;17(4):198-9. doi: 10.1038/nrn.2016.30. Epub 2016 Mar 10.
3
Sigh generation in preBötzinger Complex.
bioRxiv. 2024 Nov 4:2024.06.05.597565. doi: 10.1101/2024.06.05.597565.
4
Distinct roles of NMB and GRP in itch transmission.
Sci Rep. 2017 Nov 13;7(1):15466. doi: 10.1038/s41598-017-15756-0.
5
Role of gastrin-releasing peptide and neuromedin B in anxiety and fear-related behavior.
Behav Brain Res. 2007 Apr 16;179(1):133-40. doi: 10.1016/j.bbr.2007.01.021. Epub 2007 Jan 31.
8
A carotid body-brainstem neural circuit mediates sighing in hypoxia.
Curr Biol. 2023 Mar 13;33(5):827-837.e4. doi: 10.1016/j.cub.2023.01.019. Epub 2023 Feb 6.
9
Characterization of NMB, GRP and their receptors (BRS3, NMBR and GRPR) in chickens.
J Mol Endocrinol. 2017 Jul;59(1):61-79. doi: 10.1530/JME-17-0020. Epub 2017 May 12.
10
Comparison of the peptide structural requirements for high affinity interaction with bombesin receptors.
Eur J Pharmacol. 1995 Dec 27;294(1):55-69. doi: 10.1016/0014-2999(95)00510-2.

引用本文的文献

1
Ion channels in respiratory rhythm generation and sensorimotor integration.
Neuron. 2025 Jul 21. doi: 10.1016/j.neuron.2025.06.011.
2
Respiratory and Metabolic Effects of Active Expiration in Freely Behaving Rats.
Acta Physiol (Oxf). 2025 Sep;241(9):e70084. doi: 10.1111/apha.70084.
3
Sigh generation in preBötzinger complex.
Elife. 2025 Jun 24;13:RP100192. doi: 10.7554/eLife.100192.
5
Sudden Unexpected Death in Epilepsy: Central Respiratory Chemoreception.
Int J Mol Sci. 2025 Feb 13;26(4):1598. doi: 10.3390/ijms26041598.
6
Cyclic sighing in the clinic waiting room may decrease pain: results from a pilot randomized controlled trial.
J Behav Med. 2025 Apr;48(2):385-393. doi: 10.1007/s10865-024-00548-5. Epub 2025 Feb 4.
7
Brainstem opioid peptidergic neurons regulate cough reflexes in mice.
Innovation (Camb). 2024 Oct 21;5(6):100721. doi: 10.1016/j.xinn.2024.100721. eCollection 2024 Nov 4.
8
General anesthesia activates a central anxiolytic center in the BNST.
Cell Rep. 2024 Nov 26;43(11):114909. doi: 10.1016/j.celrep.2024.114909. Epub 2024 Oct 25.
9
Hypoxia evokes a sequence of raphe-pontomedullary network operations for inspiratory drive amplification and gasping.
J Neurophysiol. 2024 Oct 1;132(4):1315-1329. doi: 10.1152/jn.00032.2024. Epub 2024 Sep 11.
10
The hypoxic respiratory response of the pre-Bötzinger complex.
Heliyon. 2024 Jul 11;10(14):e34491. doi: 10.1016/j.heliyon.2024.e34491. eCollection 2024 Jul 30.

本文引用的文献

1
Neural Control of Breathing and CO2 Homeostasis.
Neuron. 2015 Sep 2;87(5):946-61. doi: 10.1016/j.neuron.2015.08.001.
2
Advanced CLARITY for rapid and high-resolution imaging of intact tissues.
Nat Protoc. 2014 Jul;9(7):1682-97. doi: 10.1038/nprot.2014.123. Epub 2014 Jun 19.
3
The integrative role of the sigh in psychology, physiology, pathology, and neurobiology.
Prog Brain Res. 2014;209:91-129. doi: 10.1016/B978-0-444-63274-6.00006-0.
4
Distinct inspiratory rhythm and pattern generating mechanisms in the preBötzinger complex.
J Neurosci. 2013 May 29;33(22):9235-45. doi: 10.1523/JNEUROSCI.4143-12.2013.
5
Understanding the rhythm of breathing: so near, yet so far.
Annu Rev Physiol. 2013;75:423-52. doi: 10.1146/annurev-physiol-040510-130049. Epub 2012 Oct 29.
6
Active expiration induced by excitation of ventral medulla in adult anesthetized rats.
J Neurosci. 2011 Feb 23;31(8):2895-905. doi: 10.1523/JNEUROSCI.5338-10.2011.
7
A high-resolution anatomical atlas of the transcriptome in the mouse embryo.
PLoS Biol. 2011 Jan 18;9(1):e1000582. doi: 10.1371/journal.pbio.1000582.
8
A unitary analysis of pulmonary volume receptors.
Am J Physiol. 1946 Sep;147:100-14. doi: 10.1152/ajplegacy.1946.147.1.100.
9
Central respiratory chemoreception.
J Comp Neurol. 2010 Oct 1;518(19):3883-906. doi: 10.1002/cne.22435.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验