Suppr超能文献

糜酶抑制剂TY-51469在炎症性肠病治疗中的应用

Chymase inhibitor TY-51469 in therapy of inflammatory bowel disease.

作者信息

Liu Wei-Xin, Wang Ying, Sang Li-Xuan, Zhang Shen, Wang Ting, Zhou Feng, Gu Shou-Zhi

机构信息

Wei-Xin Liu, Ying Wang, Shen Zhang, Ting Wang, Feng Zhou, Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China.

出版信息

World J Gastroenterol. 2016 Feb 7;22(5):1826-33. doi: 10.3748/wjg.v22.i5.1826.

Abstract

AIM

To investigate the effect of chymase inhibitor TY-51469 in the therapy of inflammatory bowel disease and the underlying mechanism.

METHODS

Seventy-five healthy Sprague-Dawley rats were randomly assigned to one of the three groups (control group, model group and TY-51469 experiment group) and each group had twenty-five rats. The rats of the model group and experiment group were subjected to treatment with 3.5% dextran sulfate sodium (DSS) 10 mg/kg to induce colitis. The control group and model group were subjected to intraperitoneal injection of saline, while the experiment group was subjected to intraperitoneal injection of 10 mg/kg TY-51469 each day. Five rats of each group were sacrificed on 0, 7, 14, 21 and 28 d, respectively. The degree of inflammation was assessed by histopathological scoring; flow cytometry was performed to detect the proportion of CD4(+)CD25(+) Tregs in peripheral blood; colon tissues of rats were collected to measure mRNA and protein expression by PCR, Western blot and immunohistochemistry; serum levels of interleukin (IL)-10, transforming growth factor (TGF)-β1 and IL-17A were detected by ELISA.

RESULTS

The rats in the experiment group and model group had significantly more severe colitis than the ones in the control group (P < 0.05) before treatment on day 0; no significant difference was observed between the experiment group and model group (P > 0.05). After treatment with TY-51469, the rats in the experiment group had significantly less severe colitis compared with the model group on 7, 14, 21 and 28 d (P < 0.05). The proportion of CD4(+)CD25(+) Tregs was lower in the model group and experiment group than in the control group; the experiment group had a significantly higher proportion of CD4(+)CD25(+) Tregs than that in the model group (P < 0.05). The model group and experiment group demonstrated lower expression of Foxp3 than the control group; the experiment group had higher Foxp3 expression than the model group (P < 0.05). Cytokines IL-10, TGF-β1 and IL-17A were lower in the model group and experiment group than in the control group; the experiment group had higher expression than the model group (P < 0.05).

CONCLUSION

After treatment with chymase inhibitor TY-51469, the experiment group demonstrated more significantly reduced intestinal inflammation and higher expression of immune tolerance related cytokines (IL-10, TGF-β1, IL-17A) and Foxp3 which is specifically expressed in Tregs compared with the model group. Therefore, chymase inhibitor TY-51469 might ameliorate the progression of DSS-induced colitis possibly by increasing the expression of Tregs and cytokines.

摘要

目的

探讨糜酶抑制剂TY-51469对炎症性肠病的治疗作用及其潜在机制。

方法

将75只健康的Sprague-Dawley大鼠随机分为三组(对照组、模型组和TY-51469实验组),每组25只。模型组和实验组大鼠用10mg/kg 3.5%葡聚糖硫酸钠(DSS)处理以诱导结肠炎。对照组和模型组腹腔注射生理盐水,而实验组每天腹腔注射10mg/kg TY-51469。分别于第0、7、14、21和28天处死每组5只大鼠。通过组织病理学评分评估炎症程度;采用流式细胞术检测外周血中CD4(+)CD25(+)调节性T细胞(Tregs)的比例;收集大鼠结肠组织,通过PCR、蛋白质印迹法和免疫组织化学检测mRNA和蛋白表达;采用酶联免疫吸附测定(ELISA)法检测血清白细胞介素(IL)-10、转化生长因子(TGF)-β1和IL-17A水平。

结果

在第0天治疗前,实验组和模型组大鼠的结肠炎明显比对照组严重(P < 0.05);实验组和模型组之间无显著差异(P > 0.05)。用TY-51469治疗后,在第7、14、21和28天,实验组大鼠的结肠炎比模型组明显减轻(P < 0.05)。模型组和实验组中CD4(+)CD25(+) Tregs的比例低于对照组;实验组中CD4(+)CD25(+) Tregs的比例明显高于模型组(P < 0.05)。模型组和实验组中叉头框蛋白3(Foxp3)的表达低于对照组;实验组中Foxp3的表达高于模型组(P < 0.05)。模型组和实验组中细胞因子IL-10、TGF-β1和IL-17A低于对照组;实验组中的表达高于模型组(P < 0.05)。

结论

与模型组相比,用糜酶抑制剂TY-51469治疗后,实验组肠道炎症明显减轻,免疫耐受相关细胞因子(IL-10、TGF-β1、IL-17A)和Tregs中特异性表达的Foxp3表达更高。因此,糜酶抑制剂TY-51469可能通过增加Tregs和细胞因子的表达来改善DSS诱导的结肠炎的进展。

相似文献

1
Chymase inhibitor TY-51469 in therapy of inflammatory bowel disease.
World J Gastroenterol. 2016 Feb 7;22(5):1826-33. doi: 10.3748/wjg.v22.i5.1826.
5
Perilla frutescens extract ameliorates DSS-induced colitis by suppressing proinflammatory cytokines and inducing anti-inflammatory cytokines.
Am J Physiol Gastrointest Liver Physiol. 2015 Jan 1;308(1):G32-41. doi: 10.1152/ajpgi.00294.2014. Epub 2014 Oct 30.
6
Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance.
J Biol Chem. 2014 Sep 26;289(39):26847-26858. doi: 10.1074/jbc.M114.590554. Epub 2014 Aug 11.
7
Effects of mesenchymal stem cells on Treg cells in rats with colitis.
Clin Exp Immunol. 2023 Dec 13;214(3):296-303. doi: 10.1093/cei/uxad072.
10
regulates the programmed cell death 1 pathway and immune response in mice with inflammatory bowel disease.
World J Gastroenterol. 2022 Jul 14;28(26):3164-3176. doi: 10.3748/wjg.v28.i26.3164.

引用本文的文献

2
Mast cell-mediated immune regulation in health and disease.
Front Med (Lausanne). 2023 Aug 17;10:1213320. doi: 10.3389/fmed.2023.1213320. eCollection 2023.
3
Mast cells as important regulators in the development of psoriasis.
Front Immunol. 2022 Nov 3;13:1022986. doi: 10.3389/fimmu.2022.1022986. eCollection 2022.
4
Interplay between Mast Cells and Regulatory T Cells in Immune-Mediated Cholangiopathies.
Int J Mol Sci. 2022 May 24;23(11):5872. doi: 10.3390/ijms23115872.
6
Digestive Inflammation: Role of Proteolytic Dysregulation.
Int J Mol Sci. 2021 Mar 10;22(6):2817. doi: 10.3390/ijms22062817.
7
Novel Insight into the in vivo Function of Mast Cell Chymase: Lessons from Knockouts and Inhibitors.
J Innate Immun. 2020;12(5):357-372. doi: 10.1159/000506985. Epub 2020 Jun 4.
8
Mouse Mast Cell Protease-4 Recruits Leukocytes in the Inflammatory Phase of Surgically Wounded Skin.
Adv Wound Care (New Rochelle). 2019 Oct 1;8(10):469-475. doi: 10.1089/wound.2018.0898. Epub 2019 Aug 21.
9
Japanese encephalitis virus neuropenetrance is driven by mast cell chymase.
Nat Commun. 2019 Feb 11;10(1):706. doi: 10.1038/s41467-019-08641-z.

本文引用的文献

1
Epidemiology and risk factors for IBD.
Nat Rev Gastroenterol Hepatol. 2015 Apr;12(4):205-17. doi: 10.1038/nrgastro.2015.34. Epub 2015 Mar 3.
2
Current, new and future biological agents on the horizon for the treatment of inflammatory bowel diseases.
Therap Adv Gastroenterol. 2015 Mar;8(2):66-82. doi: 10.1177/1756283X14558193.
3
New strategies for treatment of inflammatory bowel disease.
Front Med (Lausanne). 2014 Mar 24;1:3. doi: 10.3389/fmed.2014.00003. eCollection 2014.
4
TGF-β: guardian of T cell function.
J Immunol. 2013 Oct 15;191(8):3973-9. doi: 10.4049/jimmunol.1301843.
5
Regulatory T cells: a review.
Natl Med J India. 2012 Nov-Dec;25(6):341-51.
6
Why interleukin-10 supplementation does not work in Crohn's disease patients.
World J Gastroenterol. 2013 Jul 7;19(25):3931-41. doi: 10.3748/wjg.v19.i25.3931.
7
Mathematical model of the roles of T cells in inflammatory bowel disease.
Bull Math Biol. 2013 Sep;75(9):1417-33. doi: 10.1007/s11538-013-9853-2. Epub 2013 Jun 13.
8
Induced and natural regulatory T cells in the development of inflammatory bowel disease.
Inflamm Bowel Dis. 2013 Jul;19(8):1772-88. doi: 10.1097/MIB.0b013e318281f5a3.
9
Chymase inhibition and cardiovascular protection.
Cardiovasc Drugs Ther. 2013 Apr;27(2):139-43. doi: 10.1007/s10557-013-6450-4.
10
Ulcerative colitis.
BMJ. 2013 Feb 5;346:f432. doi: 10.1136/bmj.f432.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验