Suppr超能文献

细胞大小决定胚胎发育过程中纺锤体组装检查点的强度。

Cell Size Determines the Strength of the Spindle Assembly Checkpoint during Embryonic Development.

作者信息

Galli Matilde, Morgan David O

机构信息

Department of Physiology and Department of Biochemistry and Biophysics, University of California, 600 16(th) Street, San Francisco, CA 94143, USA.

出版信息

Dev Cell. 2016 Feb 8;36(3):344-52. doi: 10.1016/j.devcel.2016.01.003.

Abstract

The spindle assembly checkpoint (SAC) delays mitotic progression when chromosomes are not properly attached to microtubules of the mitotic spindle. Cells vary widely in the extent to which they delay mitotic progression upon SAC activation. To explore the mechanisms that determine checkpoint strength in different cells, we systematically measured the mitotic delay induced by microtubule disruption at different stages of embryogenesis in Caenorhabditis elegans. Strikingly, we observed a gradual increase in SAC strength after each round of division. Analysis of mutants that alter cell size or ploidy revealed that SAC strength is determined primarily by cell size and the number of kinetochores. These findings provide clear evidence in vivo that the kinetochore-to-cytoplasm ratio determines the strength of the SAC, providing new insights into why cells exhibit such large variations in their SAC responses.

摘要

纺锤体组装检查点(SAC)在染色体未正确附着于有丝分裂纺锤体的微管时,会延迟有丝分裂进程。细胞在SAC激活后延迟有丝分裂进程的程度差异很大。为了探究决定不同细胞中检查点强度的机制,我们系统地测量了秀丽隐杆线虫胚胎发育不同阶段微管破坏诱导的有丝分裂延迟。令人惊讶的是,我们观察到每一轮分裂后SAC强度都逐渐增加。对改变细胞大小或倍性的突变体的分析表明,SAC强度主要由细胞大小和动粒数量决定。这些发现为体内动粒与细胞质的比例决定SAC强度提供了明确证据,为细胞为何在SAC反应中表现出如此大的差异提供了新的见解。

相似文献

1
Cell Size Determines the Strength of the Spindle Assembly Checkpoint during Embryonic Development.
Dev Cell. 2016 Feb 8;36(3):344-52. doi: 10.1016/j.devcel.2016.01.003.
2
Bigger Isn't Always Better: Cell Size and the Spindle Assembly Checkpoint.
Dev Cell. 2016 Feb 8;36(3):244-6. doi: 10.1016/j.devcel.2016.01.017.
7
Connecting up and clearing out: how kinetochore attachment silences the spindle assembly checkpoint.
Chromosoma. 2012 Oct;121(5):509-25. doi: 10.1007/s00412-012-0378-5. Epub 2012 Jul 11.
8
Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo.
Mol Biol Cell. 2018 Jun 15;29(12):1435-1448. doi: 10.1091/mbc.E18-04-0215. Epub 2018 Apr 24.
9
Dissecting the roles of human BUB1 in the spindle assembly checkpoint.
J Cell Sci. 2015 Aug 15;128(16):2975-82. doi: 10.1242/jcs.169821. Epub 2015 Jul 6.
10
Negative feedback at kinetochores underlies a responsive spindle checkpoint signal.
Nat Cell Biol. 2014 Dec;16(12):1257-64. doi: 10.1038/ncb3065. Epub 2014 Nov 17.

引用本文的文献

2
The chromosomal challenge of human embryos: Mechanisms and fundamentals.
HGG Adv. 2025 Apr 10;6(3):100437. doi: 10.1016/j.xhgg.2025.100437.
3
Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis.
Front Cell Dev Biol. 2025 Jan 22;12:1491394. doi: 10.3389/fcell.2024.1491394. eCollection 2024.
4
A circle of life: platelet and megakaryocyte cytoskeleton dynamics in health and disease.
Open Biol. 2024 Jun;14(6):240041. doi: 10.1098/rsob.240041. Epub 2024 Jun 5.
5
6
Spindle assembly checkpoint insensitivity allows meiosis-II despite chromosomal defects in aged eggs.
EMBO Rep. 2023 Nov 6;24(11):e57227. doi: 10.15252/embr.202357227. Epub 2023 Oct 5.
7
An unexpected timer for cell division.
Nature. 2023 May;617(7959):39-40. doi: 10.1038/d41586-023-01355-9.
8
Systematic analysis of cell morphodynamics in early embryogenesis.
Front Bioinform. 2023 Mar 21;3:1082531. doi: 10.3389/fbinf.2023.1082531. eCollection 2023.
9
Meiotic cells escape prolonged spindle checkpoint activity through kinetochore silencing and slippage.
PLoS Genet. 2023 Apr 5;19(4):e1010707. doi: 10.1371/journal.pgen.1010707. eCollection 2023 Apr.
10
Principles and dynamics of spindle assembly checkpoint signalling.
Nat Rev Mol Cell Biol. 2023 Aug;24(8):543-559. doi: 10.1038/s41580-023-00593-z. Epub 2023 Mar 24.

本文引用的文献

1
Investigating the regulation of stem and progenitor cell mitotic progression by in situ imaging.
Curr Biol. 2015 May 4;25(9):1123-34. doi: 10.1016/j.cub.2015.02.054. Epub 2015 Mar 26.
2
Spindle assembly checkpoint acquisition at the mid-blastula transition.
PLoS One. 2015 Mar 5;10(3):e0119285. doi: 10.1371/journal.pone.0119285. eCollection 2015.
4
The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C.
Nature. 2015 Jan 29;517(7536):631-4. doi: 10.1038/nature13911. Epub 2014 Nov 12.
5
Signalling dynamics in the spindle checkpoint response.
Nat Rev Mol Cell Biol. 2014 Nov;15(11):736-47. doi: 10.1038/nrm3888. Epub 2014 Oct 10.
6
A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint.
J Cell Biol. 2014 Mar 3;204(5):647-57. doi: 10.1083/jcb.201311015. Epub 2014 Feb 24.
7
Kinetic framework of spindle assembly checkpoint signalling.
Nat Cell Biol. 2013 Nov;15(11):1370-7. doi: 10.1038/ncb2842. Epub 2013 Oct 6.
8
The spindle assembly checkpoint works like a rheostat rather than a toggle switch.
Nat Cell Biol. 2013 Nov;15(11):1378-85. doi: 10.1038/ncb2855. Epub 2013 Oct 6.
9
Panta rhei: the APC/C at steady state.
J Cell Biol. 2013 Apr 15;201(2):177-89. doi: 10.1083/jcb.201301130.
10
Structure of the mitotic checkpoint complex.
Nature. 2012 Mar 21;484(7393):208-13. doi: 10.1038/nature10896.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验