Espinoza Eli M, Larsen Jillian M, Vullev Valentine I
Department of Chemistry, University of California , Riverside, California 92521, United States.
Department of Bioengineering, University of California , Riverside, California 92521, United States.
J Phys Chem Lett. 2016 Mar 3;7(5):758-64. doi: 10.1021/acs.jpclett.5b02881. Epub 2016 Feb 15.
Oligoamides composed of anthranilic acid derivatives present a promising choice for mediating long-range charge transfer and controlling its directionality. Hole hopping, modulated by the anthranilamide (Aa) permanent dipoles, provides a plausible means for such rectified long-range charge transduction. All aliphatic and most aromatic amides, however, decompose upon oxidation, rendering them unacceptable for hole-hopping pathways. We, therefore, employ electrochemical and computational analysis to examine how to suppress oxidative degradation and stabilize the radical cations of N-acylated Aa derivatives. Our findings reveal two requirements for attaining long-lived radical cations of these aromatic amides: (1) keeping the reduction potentials for oxidizing the Aa residues under about 1.4 V vs SCE and (2) adding an electron-donating group para to the N-terminal amide of the aromatic ring, which prevents the electron spin density of the radical cation from extending over the C-terminal amide. These findings provide essential information for the design of hole-transfer amides.
由邻氨基苯甲酸衍生物组成的低聚酰胺是介导长程电荷转移并控制其方向性的一个有前景的选择。由邻氨基苯甲酰胺(Aa)永久偶极子调制的空穴跳跃为这种整流长程电荷转导提供了一种合理的方式。然而,所有脂肪族和大多数芳香族酰胺在氧化时都会分解,使其不适用于空穴跳跃途径。因此,我们采用电化学和计算分析来研究如何抑制氧化降解并稳定N-酰化Aa衍生物的自由基阳离子。我们的研究结果揭示了获得这些芳香族酰胺长寿命自由基阳离子的两个要求:(1)使氧化Aa残基的还原电位相对于饱和甘汞电极保持在约1.4 V以下;(2)在芳香环的N-末端酰胺的对位添加一个供电子基团,这可防止自由基阳离子的电子自旋密度扩展到C-末端酰胺上。这些研究结果为空穴转移酰胺的设计提供了重要信息。