Pandey Suchita, Kumar Jitender, Awasthi A M
Thermodynamics Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452 001, India.
Phys Chem Chem Phys. 2016 Mar 7;18(9):6569-79. doi: 10.1039/c5cp06932g.
The magneto-dielectric spectroscopy of La0.95Ca0.05CoO3 covering the crossover of spin states reveals the strong coupling of its spin and dipolar degrees of freedom. The signature of the spin-state transition at 30 K clearly manifests in the magnetization data at a 1 Tesla optimal field. Our Co L3,2-edge X-ray absorption spectrum on the doped specimen is consistent with its suppressed low-to-intermediate spin-state transition temperature at ∼30 K compared to ∼150 K, documented for pure LaCoO3. The dispersive activation step in the dielectric constant with the associated relaxation peak in imaginary permittivity characterize the allied influence of coexistent spin-states on the dielectric character. Dipolar relaxation in the low-spin regime below the transition temperature is partly segmental (Vogel-Fulcher-Tamman (VFT) kinetics) and features magnetic-field tunability, whereas in the low/intermediate-spin disordered state above ∼30 K, it is uncorrelated (Arrhenic kinetics) and almost impervious to the magnetic field H. Kinetics-switchover defines the dipolar-glass transition temperature Tg(H) (=27 K|0T), below which their magneto-thermally-activated cooperative relaxations freeze out by the VFT temperature T0(H) (=15 K|0T). An applied magnetic field facilitates thermal activation in toggling the low spins up into the intermediate states. Consequently, the downsized dipolar-glass segments in the low-spin state and the independent dipoles in the intermediate state exhibit accelerated dynamics. A critical 5 Tesla field collapses the entire relaxation kinetics into a single Arrhenic behaviour, signaling that the dipolar glass is completely devitrified under all higher fields. The magneto-electricity (ME) spanning sizeable thermo-spectral range registers diverse signatures here in kinetic, spectral, and field behaviors, in contrast to the static/perturbative ME observed close to the spin-ordering in typical multiferroics. Intrinsic magneto-dielectricity (50%) along with vanishing magneto-loss is obtained at (27 K/50 kHz)9T. The sub-linear deviant and field-hysteretic split seen in above 4 Tesla suggests the emergence of robust dipoles organized into nano-clusters, induced by the internally-generated high magneto-electric field. An elaborate ω-T multi-dispersions diagram maps the rich variety of phase/response patterns, revealing highly-interacting magnetic and electric moments in the system.
覆盖自旋态转变的La0.95Ca0.05CoO3的磁电光谱揭示了其自旋和偶极自由度的强耦合。30 K时自旋态转变的特征在1特斯拉最佳场强下的磁化数据中清晰显现。我们对掺杂样品的Co L3,2边X射线吸收光谱与其在约30 K时低到中间自旋态转变温度的抑制相一致,相比之下,纯LaCoO3的该温度约为150 K。介电常数中的色散激活步骤以及虚部介电常数中相关的弛豫峰表征了共存自旋态对介电特性的联合影响。低于转变温度的低自旋态下的偶极弛豫部分是分段的(Vogel-Fulcher-Tamman (VFT) 动力学)且具有磁场可调性,而在高于约30 K的低/中间自旋无序态下,它是不相关的(阿仑尼乌斯动力学)且几乎不受磁场H影响。动力学转换定义了偶极玻璃转变温度Tg(H)(=27 K|0T),低于该温度,它们的磁热激活协同弛豫在VFT温度T0(H)(=15 K|0T)下冻结。施加的磁场有助于热激活,将低自旋翻转到中间态。因此,低自旋态下尺寸减小的偶极玻璃段和中间态下的独立偶极表现出加速动力学。临界的5特斯拉场将整个弛豫动力学坍缩为单一的阿仑尼乌斯行为,表明在所有更高场强下偶极玻璃完全失透。与典型多铁性材料中接近自旋有序时观察到的静态/微扰磁电效应相比,跨越相当大的热光谱范围的磁电效应在这里的动力学、光谱和场行为中呈现出多样的特征。在(27 K/50 kHz)9T时获得了本征磁电效应(50%)以及消失 的磁损耗。在4特斯拉以上看到的亚线性偏差和场滞分裂表明,由内部产生的高磁电场诱导形成了组织成纳米团簇的强偶极。一个详尽的ω-T多色散图描绘了丰富多样的相/响应模式,揭示了系统中高度相互作用的磁矩和电矩。