Suppr超能文献

OncoBinder facilitates interpretation of proteomic interaction data by capturing coactivation pairs in cancer.

作者信息

Van Coillie Samya, Liang Lunxi, Zhang Yao, Wang Huanbin, Fang Jing-Yuan, Xu Jie

机构信息

State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China.

Faculty of Medicine, Catholic University Leuven, Leuven, B-3000, Belgium.

出版信息

Oncotarget. 2016 Apr 5;7(14):17608-15. doi: 10.18632/oncotarget.7305.

Abstract

High-throughput methods such as co-immunoprecipitationmass spectrometry (coIP-MS) and yeast 2 hybridization (Y2H) have suggested a broad range of unannotated protein-protein interactions (PPIs), and interpretation of these PPIs remains a challenging task. The advancements in cancer genomic researches allow for the inference of "coactivation pairs" in cancer, which may facilitate the identification of PPIs involved in cancer. Here we present OncoBinder as a tool for the assessment of proteomic interaction data based on the functional synergy of oncoproteins in cancer. This decision tree-based method combines gene mutation, copy number and mRNA expression information to infer the functional status of protein-coding genes. We applied OncoBinder to evaluate the potential binders of EGFR and ERK2 proteins based on the gastric cancer dataset of The Cancer Genome Atlas (TCGA). As a result, OncoBinder identified high confidence interactions (annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) or validated by low-throughput assays) more efficiently than co-expression based method. Taken together, our results suggest that evaluation of gene functional synergy in cancer may facilitate the interpretation of proteomic interaction data. The OncoBinder toolbox for Matlab is freely accessible online.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/4951236/d9b26f8fdb6c/oncotarget-07-17608-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验