Suppr超能文献

因果推断中基于倾向得分的方法与基于边际治疗效应的方法:识别、估计与应用

Propensity Score-Based Methods versus MTE-Based Methods in Causal Inference: Identification, Estimation, and Application.

作者信息

Zhou Xiang, Xie Y U

机构信息

University of Michigan.

出版信息

Sociol Methods Res. 2016 Feb;45(1):3-40. doi: 10.1177/0049124114555199. Epub 2014 Nov 3.

Abstract

Since the seminal introduction of the propensity score by Rosenbaum and Rubin, propensity-score-based (PS-based) methods have been widely used for drawing causal inferences in the behavioral and social sciences. However, the propensity score approach depends on the ignorability assumption: there are no unobserved confounders once observed covariates are taken into account. For situations where this assumption may be violated, Heckman and his associates have recently developed a novel approach based on marginal treatment effects (MTE). In this paper, we (1) explicate consequences for PS-based methods when aspects of the ignorability assumption are violated; (2) compare PS-based methods and MTE-based methods by making a close examination of their identification assumptions and estimation performances; (3) apply these two approaches in estimating the economic return to college using data from NLSY 1979 and discuss their discrepancies in results. When there is a sorting gain but no systematic baseline difference between treated and untreated units given observed covariates, PS-based methods can identify the treatment effect of the treated (TT). The MTE approach performs best when there is a valid and strong instrumental variable (IV). In addition, this paper introduces the "smoothing-difference PS-based method," which enables us to uncover heterogeneity across people of different propensity scores in both counterfactual outcomes and treatment effects.

摘要

自罗森鲍姆(Rosenbaum)和鲁宾(Rubin)开创性地引入倾向得分以来,基于倾向得分(PS)的方法已在行为科学和社会科学中广泛用于进行因果推断。然而,倾向得分方法依赖于可忽略性假设:一旦考虑了观察到的协变量,就不存在未观察到的混杂因素。对于可能违反此假设的情况,赫克曼(Heckman)及其同事最近开发了一种基于边际处理效应(MTE)的新方法。在本文中,我们(1)阐述了当可忽略性假设的某些方面被违反时基于PS的方法的后果;(2)通过仔细研究基于PS的方法和基于MTE的方法的识别假设和估计性能来进行比较;(3)使用1979年全国青年纵向调查(NLSY)的数据应用这两种方法来估计大学教育的经济回报,并讨论它们在结果上的差异。当存在选择收益但在给定观察到的协变量时处理组和未处理组之间没有系统的基线差异时,基于PS的方法可以识别处理组的处理效应(TT)。当存在有效的强工具变量(IV)时,MTE方法表现最佳。此外,本文介绍了“基于平滑差异PS的方法”,该方法使我们能够揭示不同倾向得分的人群在反事实结果和处理效应方面的异质性。

相似文献

1
Propensity Score-Based Methods versus MTE-Based Methods in Causal Inference: Identification, Estimation, and Application.
Sociol Methods Res. 2016 Feb;45(1):3-40. doi: 10.1177/0049124114555199. Epub 2014 Nov 3.
2
Heterogeneous Treatment Effects in the Presence of Self-Selection: A Propensity Score Perspective.
Sociol Methodol. 2020 Aug;50(1):350-385. doi: 10.1177/0081175019862593. Epub 2019 Aug 2.
3
Estimating Heterogeneous Treatment Effects with Observational Data.
Sociol Methodol. 2012 Aug;42(1):314-347. doi: 10.1177/0081175012452652.
5
Practice of causal inference with the propensity of being zero or one: assessing the effect of arbitrary cutoffs of propensity scores.
Commun Stat Appl Methods. 2016 Jan;23(1):1-20. doi: 10.5351/CSAM.2016.23.1.001. Epub 2016 Jan 31.
6
Marginal Treatment Effects from a Propensity Score Perspective.
J Polit Econ. 2019 Dec;127(6):3070-3084. doi: 10.1086/702172.
7
A new weighted balance measure helped to select the variables to be included in a propensity score model.
J Clin Epidemiol. 2015 Dec;68(12):1415-22.e2. doi: 10.1016/j.jclinepi.2015.04.009. Epub 2015 May 1.
8
Causal inference accounting for unobserved confounding after outcome regression and doubly robust estimation.
Biometrics. 2019 Jun;75(2):506-515. doi: 10.1111/biom.13001. Epub 2019 Mar 29.
9
10
On the use of propensity scores in principal causal effect estimation.
Stat Med. 2009 Oct 15;28(23):2857-75. doi: 10.1002/sim.3669.

引用本文的文献

2
Heterogeneous returns to college over the life course.
Sci Adv. 2021 Dec 17;7(51):eabg7641. doi: 10.1126/sciadv.abg7641. Epub 2021 Dec 15.
3
Heterogeneous Treatment Effects in the Presence of Self-Selection: A Propensity Score Perspective.
Sociol Methodol. 2020 Aug;50(1):350-385. doi: 10.1177/0081175019862593. Epub 2019 Aug 2.
5
Case selection and causal inferences in qualitative comparative research.
PLoS One. 2019 Jul 24;14(7):e0219727. doi: 10.1371/journal.pone.0219727. eCollection 2019.
6
Ethnic enclaves revisited: Effects on earnings of migrant workers in China.
Chin J Sociol. 2016 Apr;2(2):214-234. doi: 10.1177/2057150X16633580. Epub 2016 Apr 26.
7
Tips and tricks of the propensity score methods in the thoracic surgery research.
J Thorac Dis. 2017 Apr;9(4):920-923. doi: 10.21037/jtd.2017.03.60.
8
Population heterogeneity and causal inference.
Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6262-8. doi: 10.1073/pnas.1303102110. Epub 2013 Mar 25.

本文引用的文献

1
Estimating Marginal Returns to Education.
Am Econ Rev. 2011 Oct;101(6):2754-2781. doi: 10.1257/aer.101.6.2754.
2
Estimating Heterogeneous Treatment Effects with Observational Data.
Sociol Methodol. 2012 Aug;42(1):314-347. doi: 10.1177/0081175012452652.
3
Heterogeneity in returns to college education: selection bias in contemporary taiwan.
Soc Sci Res. 2011 May;40(3):796-810. doi: 10.1016/j.ssresearch.2010.12.008.
5
Investigating population heterogeneity with factor mixture models.
Psychol Methods. 2005 Mar;10(1):21-39. doi: 10.1037/1082-989X.10.1.21.
8
Local instrumental variables and latent variable models for identifying and bounding treatment effects.
Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4730-4. doi: 10.1073/pnas.96.8.4730.
9
Estimating causal effects from large data sets using propensity scores.
Ann Intern Med. 1997 Oct 15;127(8 Pt 2):757-63. doi: 10.7326/0003-4819-127-8_part_2-199710151-00064.
10
Invariants and noninvariants in the concept of interdependent effects.
Scand J Work Environ Health. 1988 Apr;14(2):125-9. doi: 10.5271/sjweh.1945.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验