Ray Manisha, Waller Sarah E, Jarrold Caroline Chick
Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States.
Department of Chemistry, SUNY Stony Brook , Stony Brook, New York 11794-3400, United States.
J Phys Chem A. 2016 Mar 10;120(9):1508-19. doi: 10.1021/acs.jpca.6b00102. Epub 2016 Feb 24.
A systematic comparison of MxOy(-) + ROH (M = Mo vs W; R = Me vs Et) reaction rate coefficients and product distributions combined with results of calculations on weakly bound MxOy(-)·ROH complexes suggest that the overall reaction mechanism has three distinct steps, consistent with recently reported results on analogous MxOy(-) + H2O reactivity studies. MxOy(-) + ROH → MxOy+1(-) + RH oxidation reactions are observed for the least oxidized clusters, and MxOy(-) + ROH → MxOyROH(-) addition reactions are observed for clusters in intermediate oxidation states, as observed previously in MxOy(-) + H2O reactions. The first step is weakly bound complex formation, the rate of which is governed by the relative stability of the MxOy(-)·ROH charge-dipole complexes and the Lewis acid-base complexes. Calculations predict that MoxOy(-) clusters form more stable Lewis acid-base complexes than WxOy(-), and the stability of EtOH complexes is enhanced relative to MeOH. Consistent with this result, MoxOy(-) + ROH rate coefficients are higher than analogous WxOy(-) clusters. Rate coefficients range from 2.7 × 10(-13) cm(3) s(-1) for W3O8(-) + MeOH to 3.4 × 10(-11) cm(3) s(-1) for Mo2O4(-) + EtOH. Second, a covalently bound complex is formed, and anion photoelectron spectra of the several MxOyROH(-) addition products observed are consistent with hydroxyl-alkoxy structures that are formed readily from the Lewis acid-base complexes. Calculations indicate that addition products are trapped intermediates in the MxOy(-) + ROH → MxOy+1(-) + RH reaction, and the third step is rearrangement of the hydroxyl group to a metal hydride group to facilitate RH release. Trapped intermediates are more prevalent in MoxOy(-) reaction product distributions, indicating that the rate of this step is higher for WxOy+1RH(-) than for MoxOy+1RH(-). This result is consistent with previous computational studies on analogous MxOy(-) + H2O reactions predicting that barriers along the pathway in the rearrangement step are higher for MoxOy(-) reactions than for WxOy(-).
对MxOy(-) + ROH(M = Mo对W;R = Me对Et)反应速率系数和产物分布进行系统比较,并结合对弱束缚的MxOy(-)·ROH络合物的计算结果表明,整体反应机制有三个不同步骤,这与最近报道的关于类似的MxOy(-) + H2O反应活性研究结果一致。对于氧化程度最低的簇,观察到MxOy(-) + ROH → MxOy+1(-) + RH氧化反应,而对于处于中间氧化态的簇,观察到MxOy(-) + ROH → MxOyROH(-)加成反应,这与之前在MxOy(-) + H2O反应中观察到的情况相同。第一步是形成弱束缚络合物,其速率由MxOy(-)·ROH电荷 - 偶极络合物和路易斯酸碱络合物的相对稳定性决定。计算预测,MoxOy(-)簇比WxOy(-)形成更稳定的路易斯酸碱络合物,并且EtOH络合物相对于MeOH的稳定性增强。与该结果一致,MoxOy(-) + ROH的速率系数高于类似的WxOy(-)簇。速率系数范围从W3O8(-) + MeOH的2.7 × 10(-13) cm(3) s(-1)到Mo2O4(-) + EtOH的3.4 × 10(-11) cm(3) s(-1)。其次,形成共价束缚络合物,观察到的几种MxOyROH(-)加成产物的阴离子光电子能谱与由路易斯酸碱络合物容易形成的羟基 - 烷氧基结构一致。计算表明,加成产物是MxOy(-) + ROH → MxOy+1(-) + RH反应中的捕获中间体,第三步是羟基重排为金属氢化物基团以促进RH释放。捕获中间体在MoxOy(-)反应产物分布中更为普遍,表明该步骤的速率对于WxOy+1RH(-)高于MoxOy+1RH(-)。该结果与之前关于类似的MxOy(-) + H2O反应的计算研究一致,预测MoxOy(-)反应在重排步骤中沿途径的势垒高于WxOy(-)。