Suppr超能文献

确定能够预测关键饮食建议达成情况的少量食物组合:对2008 - 2012年英国国家饮食与营养调查进行数据挖掘

Identifying small groups of foods that can predict achievement of key dietary recommendations: data mining of the UK National Diet and Nutrition Survey, 2008-12.

作者信息

Giabbanelli Philippe J, Adams Jean

机构信息

UKCRC Centre for Diet and Activity Research (CEDAR),MRC Epidemiology Unit,University of Cambridge School of Clinical Medicine,Institute of Metabolic Science,Cambridge CB2 0QQ,UK.

出版信息

Public Health Nutr. 2016 Jun;19(9):1543-51. doi: 10.1017/S1368980016000185. Epub 2016 Feb 16.

Abstract

OBJECTIVE

Many dietary assessment methods attempt to estimate total food and nutrient intake. If the intention is simply to determine whether participants achieve dietary recommendations, this leads to much redundant data. We used data mining techniques to explore the number of foods that intake information was required on to accurately predict achievement, or not, of key dietary recommendations.

DESIGN

We built decision trees for achievement of recommendations for fruit and vegetables, sodium, fat, saturated fat and free sugars using data from a national dietary surveillance data set. Decision trees describe complex relationships between potential predictor variables (age, sex and all foods listed in the database) and outcome variables (achievement of each of the recommendations).

SETTING

UK National Diet and Nutrition Survey (NDNS, 2008-12).

SUBJECTS

The analysis included 4156 individuals.

RESULTS

Information on consumption of 113 out of 3911 (3 %) foods, plus age and sex was required to accurately categorize individuals according to all five recommendations. The best trade-off between decision tree accuracy and number of foods included occurred at between eleven (for fruit and vegetables) and thirty-two (for fat, plus age) foods, achieving an accuracy of 72 % (for fat) to 83 % (for fruit and vegetables), with similar values for sensitivity and specificity.

CONCLUSIONS

Using information on intake of 113 foods, it is possible to predict with 72-83 % accuracy whether individuals achieve key dietary recommendations. Substantial further research is required to make use of these findings for dietary assessment.

摘要

目的

许多膳食评估方法试图估算食物和营养素的总摄入量。如果目的仅仅是确定参与者是否达到膳食建议,这会产生大量冗余数据。我们使用数据挖掘技术来探究为准确预测是否达到关键膳食建议所需摄入信息的食物数量。

设计

我们利用国家膳食监测数据集的数据,构建了关于水果和蔬菜、钠、脂肪、饱和脂肪及游离糖摄入量达到建议水平的决策树。决策树描述了潜在预测变量(年龄、性别以及数据库中列出的所有食物)与结果变量(各项建议的达成情况)之间的复杂关系。

背景

英国国家饮食与营养调查(2008 - 2012年)。

对象

分析纳入了4156名个体。

结果

根据所有五项建议准确对个体进行分类,需要3911种(3%)食物中113种食物的消费信息,以及年龄和性别信息。决策树准确性与所包含食物数量之间的最佳权衡出现在11种(针对水果和蔬菜)至32种(针对脂肪,加上年龄)食物之间,准确率为72%(针对脂肪)至83%(针对水果和蔬菜),敏感性和特异性的值相近。

结论

利用113种食物的摄入信息,能够以72% - 83%的准确率预测个体是否达到关键膳食建议。要将这些发现用于膳食评估,还需要大量进一步的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad1d/10271104/a7a30cd2eb4f/S1368980016000185_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验