Yang Scott Cheng-Hsin, Lengyel Máté, Wolpert Daniel M
Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
Department of Cognitive Science, Central European University, Budapest, Hungary.
Elife. 2016 Feb 10;5:e12215. doi: 10.7554/eLife.12215.
Interpreting visual scenes typically requires us to accumulate information from multiple locations in a scene. Using a novel gaze-contingent paradigm in a visual categorization task, we show that participants' scan paths follow an active sensing strategy that incorporates information already acquired about the scene and knowledge of the statistical structure of patterns. Intriguingly, categorization performance was markedly improved when locations were revealed to participants by an optimal Bayesian active sensor algorithm. By using a combination of a Bayesian ideal observer and the active sensor algorithm, we estimate that a major portion of this apparent suboptimality of fixation locations arises from prior biases, perceptual noise and inaccuracies in eye movements, and the central process of selecting fixation locations is around 70% efficient in our task. Our results suggest that participants select eye movements with the goal of maximizing information about abstract categories that require the integration of information from multiple locations.
解读视觉场景通常需要我们从场景中的多个位置积累信息。在视觉分类任务中使用一种新颖的注视相关范式,我们发现参与者的扫描路径遵循一种主动感知策略,该策略整合了已经获取的关于场景的信息以及模式统计结构的知识。有趣的是,当通过最优贝叶斯主动传感器算法向参与者揭示位置时,分类性能显著提高。通过结合贝叶斯理想观察者和主动传感器算法,我们估计注视位置这种明显的次优性的主要部分源于先验偏差、感知噪声和眼动不准确,并且在我们的任务中选择注视位置的核心过程效率约为70%。我们的结果表明,参与者选择眼动的目标是最大化关于需要整合来自多个位置信息的抽象类别的信息。