Stern Hal S
a Department of Statistics , University of California , Irvine.
Multivariate Behav Res. 2016;51(1):23-9. doi: 10.1080/00273171.2015.1099032.
Procedures used for statistical inference are receiving increased scrutiny as the scientific community studies the factors associated with insuring reproducible research. This note addresses recent negative attention directed at p values, the relationship of confidence intervals and tests, and the role of Bayesian inference and Bayes factors, with an eye toward better understanding these different strategies for statistical inference. We argue that researchers and data analysts too often resort to binary decisions (e.g., whether to reject or accept the null hypothesis) in settings where this may not be required.
随着科学界对与确保可重复研究相关因素的研究,用于统计推断的程序正受到越来越多的审查。本笔记探讨了最近针对p值、置信区间与检验的关系以及贝叶斯推断和贝叶斯因子的作用所引发的负面关注,旨在更好地理解这些不同的统计推断策略。我们认为,研究人员和数据分析师常常在可能不需要的情况下诉诸二元决策(例如,是否拒绝或接受原假设)。