Suppr超能文献

荧光纳米金刚石:用于长期细胞追踪、超分辨率成像和纳米级温度传感的多功能工具。

Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.

作者信息

Hsiao Wesley Wei-Wen, Hui Yuen Yung, Tsai Pei-Chang, Chang Huan-Cheng

机构信息

Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan.

Department of Chemical Engineering, National Taiwan University of Science and Technology , Taipei 106, Taiwan.

出版信息

Acc Chem Res. 2016 Mar 15;49(3):400-7. doi: 10.1021/acs.accounts.5b00484. Epub 2016 Feb 16.

Abstract

Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen-vacancy (NV(-)) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV(-) has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV(-) center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV(-) fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the "brightest" member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV(-) center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the ms = 0 and ±1 sublevels. Interestingly, the transitions between the spin sublevels can be optically detected and manipulated by microwave radiation, a technique known as optically detected magnetic resonance (ODMR). In addition, the electron spins have an exceptionally long coherence time, making FND useful for ultrasensitive detection of temperature at the nanoscale. Pump-probe-type nanothermometry with a temporal resolution of better than 10 μs has been achieved with a three-point sampling method. Gold/diamond nanohybrids have also been developed for highly localized hyperthermia applications. This Account provides a summary of the recent advances in FND-enabled technologies with a special focus on long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. These emerging and multifaceted technologies are in synchronicity with modern imaging modalities.

摘要

荧光纳米金刚石(FND)最近在推动生物学、化学、物理学和材料科学等跨学科领域的新发现方面发挥了核心作用。这种纳米颗粒的独特之处在于它包含高密度的带负电荷的氮空位(NV(-))中心集合,作为内置荧光团。该中心具有许多出色的光学和磁性特性。首先,NV(-)在约550nm处有一个最大吸收峰,当暴露于绿橙色光时,它在约700nm处发射明亮的荧光,寿命超过10ns。这些光谱特性受表面修饰的影响很小,但与细胞自发荧光明显不同,因此能够对组织切片中的FND进行无背景成像。这些特性及其出色的生物相容性使FND非常适合长期细胞追踪应用,特别是在干细胞研究中。其次,作为固态中的人工原子,NV(-)中心具有完美的光稳定性,不会发生光漂白和闪烁。因此,含NV的FND适合作为受激发射损耗(STED)超分辨率成像的造影剂。通过使用高功率STED激光耗尽NV(-)荧光,可以轻松实现空间分辨率提高20倍。这种改进对于揭示生物复合物和组件的详细结构至关重要,包括细胞器和亚细胞区室。通过操纵NV中心的电荷状态,可以进一步提高活细胞成像的分辨率。作为纳米碳家族中“最亮”的成员,FND在具有前所未有的分辨率和精度的生物成像方面具有巨大的前景和潜力。最后,金刚石中的NV(-)中心是一个总电子自旋为1的类原子量子系统。自旋的基态显示出2.87GHz的晶体场分裂,将ms = 0和±1子能级分开。有趣的是,自旋子能级之间的跃迁可以通过微波辐射进行光学检测和操纵,这是一种称为光探测磁共振(ODMR)的技术。此外,电子自旋具有异常长的相干时间,使FND可用于纳米级温度的超灵敏检测。通过三点采样方法实现了时间分辨率优于10μs的泵浦 - 探测型纳米测温法。还开发了金/金刚石纳米杂化物用于高度局部化的热疗应用。本综述总结了基于FND的技术的最新进展,特别关注长期细胞追踪、超分辨率成像和纳米级温度传感。这些新兴的多方面技术与现代成像方式同步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验