Suppr超能文献

泛素信号与自噬:一场导致线粒体降解的精心编排之舞。

The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation.

作者信息

Yamano Koji, Matsuda Noriyuki, Tanaka Keiji

机构信息

Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan

Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan.

出版信息

EMBO Rep. 2016 Mar;17(3):300-16. doi: 10.15252/embr.201541486. Epub 2016 Feb 8.

Abstract

The quality of mitochondria, essential organelles that produce ATP and regulate numerous metabolic pathways, must be strictly monitored to maintain cell homeostasis. The loss of mitochondrial quality control systems is acknowledged as a determinant for many types of neurodegenerative diseases including Parkinson's disease (PD). The two gene products mutated in the autosomal recessive forms of familial early-onset PD, Parkin and PINK1, have been identified as essential proteins in the clearance of damaged mitochondria via an autophagic pathway termed mitophagy. Recently, significant progress has been made in understanding how the mitochondrial serine/threonine kinase PINK1 and the E3 ligase Parkin work together through a novel stepwise cascade to identify and eliminate damaged mitochondria, a process that relies on the orchestrated crosstalk between ubiquitin/phosphorylation signaling and autophagy. In this review, we highlight our current understanding of the detailed molecular mechanisms governing Parkin-/PINK1-mediated mitophagy and the evidences connecting Parkin/PINK1 function and mitochondrial clearance in neurons.

摘要

线粒体是产生ATP并调节众多代谢途径的重要细胞器,其质量必须受到严格监控以维持细胞内稳态。线粒体质量控制系统的丧失被认为是包括帕金森病(PD)在内的多种神经退行性疾病的一个决定因素。在常染色体隐性遗传形式的家族性早发性PD中发生突变的两个基因产物——帕金(Parkin)和PTEN诱导激酶1(PINK1),已被确定为通过一种称为线粒体自噬的自噬途径清除受损线粒体的关键蛋白质。最近,在理解线粒体丝氨酸/苏氨酸激酶PINK1和E3泛素连接酶帕金如何通过一种新的逐步级联反应共同作用以识别和清除受损线粒体方面取得了重大进展,这一过程依赖于泛素/磷酸化信号传导与自噬之间精心协调的相互作用。在这篇综述中,我们重点阐述了我们目前对帕金/PINK1介导的线粒体自噬详细分子机制的理解,以及将帕金/PINK1功能与神经元中线粒体清除联系起来的证据。

相似文献

1
The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation.
EMBO Rep. 2016 Mar;17(3):300-16. doi: 10.15252/embr.201541486. Epub 2016 Feb 8.
2
N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
Curr Genet. 2020 Aug;66(4):693-701. doi: 10.1007/s00294-020-01062-2. Epub 2020 Mar 10.
3
The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
Genes Dev. 2015 May 15;29(10):989-99. doi: 10.1101/gad.262758.115.
4
The Role of PTEN-L in Modulating PINK1-Parkin-Mediated Mitophagy.
Neurotox Res. 2022 Aug;40(4):1103-1114. doi: 10.1007/s12640-022-00475-w. Epub 2022 Jun 14.
6
The mitochondrial kinase PINK1: functions beyond mitophagy.
J Neurochem. 2016 Oct;139 Suppl 1:232-239. doi: 10.1111/jnc.13655. Epub 2016 Jun 2.
8
The PINK1-Parkin axis: An Overview.
Neurosci Res. 2020 Oct;159:9-15. doi: 10.1016/j.neures.2020.01.006. Epub 2020 Jan 23.
9
The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway.
Hum Mol Genet. 2016 Aug 15;25(16):3476-3490. doi: 10.1093/hmg/ddw189. Epub 2016 Jun 22.

引用本文的文献

1
Engineering a cell-based orthogonal ubiquitin transfer cascade for profiling the substrates of RBR E3 Parkin.
iScience. 2025 Jun 17;28(7):112913. doi: 10.1016/j.isci.2025.112913. eCollection 2025 Jul 18.
2
A substrate-interacting region of Parkin directs ubiquitination of the mitochondrial GTPase Miro1.
J Cell Biol. 2025 Aug 4;224(8). doi: 10.1083/jcb.202408025. Epub 2025 Jun 27.
4
Mitochondrial microRNAs: Key Drivers in Unraveling Neurodegenerative Diseases.
Int J Mol Sci. 2025 Jan 13;26(2):626. doi: 10.3390/ijms26020626.
5
Role of mitophagy in spinal cord ischemia-reperfusion injury.
Neural Regen Res. 2026 Feb 1;21(2):598-611. doi: 10.4103/NRR.NRR-D-24-00668. Epub 2024 Dec 7.
6
Autophagy in reproduction and pregnancy-associated diseases.
iScience. 2024 Oct 28;27(12):111268. doi: 10.1016/j.isci.2024.111268. eCollection 2024 Dec 20.
7
A substrate-interacting region of Parkin directs ubiquitination of the mitochondrial GTPase Miro1.
bioRxiv. 2024 Jun 3:2024.06.03.597144. doi: 10.1101/2024.06.03.597144.
8
KAT8 compound inhibition inhibits the initial steps of PINK1-dependant mitophagy.
Sci Rep. 2024 May 22;14(1):11721. doi: 10.1038/s41598-024-60602-9.
9
Insulin signalling regulates Pink1 mRNA localization via modulation of AMPK activity to support PINK1 function in neurons.
Nat Metab. 2024 Mar;6(3):514-530. doi: 10.1038/s42255-024-01007-w. Epub 2024 Mar 19.
10
Optineurin provides a mitophagy contact site for TBK1 activation.
EMBO J. 2024 Mar;43(5):754-779. doi: 10.1038/s44318-024-00036-1. Epub 2024 Jan 29.

本文引用的文献

1
Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1.
EMBO J. 2015 Nov 12;34(22):2840-61. doi: 10.15252/embj.201591593. Epub 2015 Oct 15.
2
Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1.
Mol Cell. 2015 Oct 1;60(1):21-34. doi: 10.1016/j.molcel.2015.08.011. Epub 2015 Sep 17.
5
Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11696-701. doi: 10.1073/pnas.1500624112. Epub 2015 Aug 31.
6
Control of p97 function by cofactor binding.
FEBS Lett. 2015 Sep 14;589(19 Pt A):2578-89. doi: 10.1016/j.febslet.2015.08.028. Epub 2015 Aug 29.
7
Organelle-Specific Initiation of Autophagy.
Mol Cell. 2015 Aug 20;59(4):522-39. doi: 10.1016/j.molcel.2015.07.021.
8
Expanding the ubiquitin code through post-translational modification.
EMBO Rep. 2015 Sep;16(9):1071-83. doi: 10.15252/embr.201540891. Epub 2015 Aug 12.
9
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy.
Nature. 2015 Aug 20;524(7565):309-314. doi: 10.1038/nature14893. Epub 2015 Aug 12.
10
Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation.
J Biol Chem. 2015 Oct 16;290(42):25199-211. doi: 10.1074/jbc.M115.671446. Epub 2015 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验