Suppr超能文献

通过破坏激活剂-中介体相互作用来抑制真菌多药耐药性。

Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

作者信息

Nishikawa Joy L, Boeszoermenyi Andras, Vale-Silva Luis A, Torelli Riccardo, Posteraro Brunella, Sohn Yoo-Jin, Ji Fei, Gelev Vladimir, Sanglard Dominique, Sanguinetti Maurizio, Sadreyev Ruslan I, Mukherjee Goutam, Bhyravabhotla Jayaram, Buhrlage Sara J, Gray Nathanael S, Wagner Gerhard, Näär Anders M, Arthanari Haribabu

机构信息

Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA.

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Nature. 2016 Feb 25;530(7591):485-9. doi: 10.1038/nature16963. Epub 2016 Feb 17.

Abstract

Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a transcription factor-binding site in Mediator as a novel therapeutic strategy in fungal infectious disease.

摘要

真核转录激活因子通过募集共激活因子(如与RNA聚合酶II相互作用的中介体复合物)来刺激特定靶基因集的表达。转录激活因子的异常功能与多种疾病有关。然而,由于缺乏对疾病相关转录激活因子基因激活机制的详细分子知识,治疗靶向研究受到了阻碍。我们之前在人类MED15中介体亚基中鉴定出一个靶向激活因子的三螺旋束KIX结构域,该结构域在真菌的Gal11/Med15中介体亚基中结构保守。Gal11/Med15 KIX结构域与多药耐药转录因子(Pdr1)直系同源物结合,Pdr1是酿酒酵母和临床上重要的人类病原体光滑念珠菌中多药耐药途径的关键调节因子。光滑念珠菌的患病率正在上升,部分原因是其对最广泛使用的抗真菌药物唑类的内在敏感性较低。光滑念珠菌的耐药临床分离株最常见的是Pdr1中存在点突变,使其组成型激活,这表明该转录激活途径是光滑念珠菌多药耐药的关键环节。在这里,我们进行了一系列生化和体内高通量筛选,以鉴定光滑念珠菌Pdr1激活结构域与光滑念珠菌Gal11A KIX结构域相互作用的小分子抑制剂。先导化合物(iKIX1)在体外以及在播散性和尿路感染的动物模型中,可抑制Pdr1依赖性基因激活,并使耐药光滑念珠菌对唑类抗真菌药物重新敏感。确定光滑念珠菌Gal11A KIX结构域的核磁共振结构,有助于详细了解iKIX1激活Pdr1基因和抑制多药耐药的分子机制。我们已经证明了以小分子靶向中介体中转录因子结合位点作为真菌传染病新治疗策略的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d322/4860947/cea51c9d8ec9/nihms748468f5.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验