Suppr超能文献

用于计算机辅助检测的深度卷积神经网络:卷积神经网络架构、数据集特征与迁移学习

Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.

作者信息

Shin Hoo-Chang, Roth Holger R, Gao Mingchen, Lu Le, Xu Ziyue, Nogues Isabella, Yao Jianhua, Mollura Daniel, Summers Ronald M

出版信息

IEEE Trans Med Imaging. 2016 May;35(5):1285-98. doi: 10.1109/TMI.2016.2528162. Epub 2016 Feb 11.

Abstract

Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.

摘要

图像识别已经取得了显著进展,这主要归功于大规模带注释数据集和深度卷积神经网络(CNN)的可用性。CNN能够从足够的训练数据中学习数据驱动的、具有高度代表性的分层图像特征。然而,在医学成像领域获得像ImageNet那样全面注释的数据集仍然是一个挑战。目前有三种主要技术成功地将CNN应用于医学图像分类:从头开始训练CNN、使用现成的预训练CNN特征以及进行无监督的CNN预训练并进行有监督的微调。另一种有效方法是迁移学习,即对从自然图像数据集预训练的CNN模型进行微调以用于医学图像任务。在本文中,我们探讨了将深度卷积神经网络应用于计算机辅助检测问题的三个重要但此前未被充分研究的因素。我们首先探索和评估不同的CNN架构。所研究的模型包含5千到1.6亿个参数,层数也各不相同。然后我们评估数据集规模和空间图像上下文对性能的影响。最后,我们研究何时以及为何从预训练的ImageNet(通过微调)进行迁移学习会有用。我们研究了两个具体的计算机辅助检测(CADe)问题,即胸腹淋巴结(LN)检测和间质性肺病(ILD)分类。我们在纵隔LN检测方面取得了当前最优的性能,并报告了在预测ILD类别的轴向CT切片时的首个五折交叉验证分类结果。我们广泛的实证评估、CNN模型分析以及宝贵的见解可以扩展到用于其他医学成像任务的高性能CAD系统的设计中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f9b/7176472/11fa96ec716d/7404017-fig-1-source.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验