Suppr超能文献

从聚腺苷酸化到剪接:mRNA 3' 端形成因子的双重作用。

From polyadenylation to splicing: Dual role for mRNA 3' end formation factors.

作者信息

Misra Ashish, Green Michael R

机构信息

a Howard Hughes Medical Institute and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester , MA USA.

出版信息

RNA Biol. 2016;13(3):259-64. doi: 10.1080/15476286.2015.1112490. Epub 2015 Nov 17.

Abstract

Recent genome-wide protein-RNA interaction studies have significantly reshaped our understanding of the role of mRNA 3' end formation factors in RNA biology. Originally thought to function solely in mediating cleavage and polyadenylation of mRNAs during their maturation, 3' end formation factors have now been shown to play a role in alternative splicing, even at internal introns--an unanticipated role for factors thought only to act at the 3' end of the mRNA. Here, we discuss the recent advances in our understanding of the role of 3' end formation factors in promoting global changes in alternative splicing at internal exon-intron junctions and how they act as cofactors for well known splicing regulators. Additionally, we review the mechanism by which these factors affect the recruitment of early intron recognition components to the 5' and 3' splice site. Our understanding of the roles of 3' end formation factors is still evolving, and the final picture might be more complex than originally envisioned.

摘要

最近的全基因组蛋白质-RNA相互作用研究显著重塑了我们对mRNA 3'末端形成因子在RNA生物学中作用的理解。3'末端形成因子最初被认为仅在mRNA成熟过程中介导其切割和多聚腺苷酸化,现在已被证明在可变剪接中发挥作用,甚至在内含子内部——这是一个仅被认为作用于mRNA 3'末端的因子所具有的意外作用。在这里,我们讨论了在理解3'末端形成因子在促进内含子-外显子连接处可变剪接的全局变化中的作用方面的最新进展,以及它们如何作为著名剪接调节因子的辅助因子发挥作用。此外,我们回顾了这些因子影响早期内含子识别成分募集到5'和3'剪接位点的机制。我们对3'末端形成因子作用的理解仍在不断发展,最终情况可能比最初设想的更为复杂。

相似文献

1
From polyadenylation to splicing: Dual role for mRNA 3' end formation factors.
RNA Biol. 2016;13(3):259-64. doi: 10.1080/15476286.2015.1112490. Epub 2015 Nov 17.
2
Global Promotion of Alternative Internal Exon Usage by mRNA 3' End Formation Factors.
Mol Cell. 2015 Jun 4;58(5):819-31. doi: 10.1016/j.molcel.2015.03.016. Epub 2015 Apr 23.
4
An active role for splicing in 3'-end formation.
Wiley Interdiscip Rev RNA. 2011 Jul-Aug;2(4):459-70. doi: 10.1002/wrna.68. Epub 2010 Dec 16.
5
Molecular basis for the recognition of the human AAUAAA polyadenylation signal.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1419-E1428. doi: 10.1073/pnas.1718723115. Epub 2017 Dec 5.
6
Structural insights into the 3'-end mRNA maturation machinery: Snapshot on polyadenylation signal recognition.
Biochimie. 2019 Sep;164:105-110. doi: 10.1016/j.biochi.2019.03.016. Epub 2019 Mar 28.

引用本文的文献

1
Regulation of transcriptome plasticity by mTOR signaling pathway.
Exp Mol Med. 2025 Aug 14. doi: 10.1038/s12276-025-01508-y.
3
Customizable gene sensing and response without altering endogenous coding sequences.
Nat Chem Biol. 2025 Mar;21(3):348-359. doi: 10.1038/s41589-024-01733-y. Epub 2024 Sep 12.
4
Construction of pVAX-1-based linear covalently closed vector with improved transgene expression.
Mol Biol Rep. 2024 Aug 24;51(1):934. doi: 10.1007/s11033-024-09856-0.
6
1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit.
Int J Mol Sci. 2024 Apr 18;25(8):4440. doi: 10.3390/ijms25084440.
7
CPSF3 Promotes Pre-mRNA Splicing and Prevents CircRNA Cyclization in Hepatocellular Carcinoma.
Cancers (Basel). 2023 Aug 11;15(16):4057. doi: 10.3390/cancers15164057.
8
Comprehensive analysis of CPSF4-related alternative splice genes in hepatocellular carcinoma.
J Cancer Res Clin Oncol. 2023 Nov;149(15):13955-13971. doi: 10.1007/s00432-023-05178-z. Epub 2023 Aug 5.
9
Transcriptome sequencing suggests that pre-mRNA splicing counteracts widespread intronic cleavage and polyadenylation.
NAR Genom Bioinform. 2023 May 30;5(2):lqad051. doi: 10.1093/nargab/lqad051. eCollection 2023 Jun.
10
Rapid nuclear deadenylation of mammalian messenger RNA.
iScience. 2022 Dec 28;26(1):105878. doi: 10.1016/j.isci.2022.105878. eCollection 2023 Jan 20.

本文引用的文献

1
Global Promotion of Alternative Internal Exon Usage by mRNA 3' End Formation Factors.
Mol Cell. 2015 Jun 4;58(5):819-31. doi: 10.1016/j.molcel.2015.03.016. Epub 2015 Apr 23.
2
Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33.
Genes Dev. 2014 Nov 1;28(21):2381-93. doi: 10.1101/gad.250985.114. Epub 2014 Oct 9.
3
CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing.
Genes Dev. 2014 Nov 1;28(21):2370-80. doi: 10.1101/gad.250993.114. Epub 2014 Oct 9.
4
HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism.
Cell Rep. 2014 Mar 27;6(6):1139-1152. doi: 10.1016/j.celrep.2014.02.005. Epub 2014 Mar 6.
5
CPEB1 coordinates alternative 3'-UTR formation with translational regulation.
Nature. 2013 Mar 7;495(7439):121-5. doi: 10.1038/nature11901. Epub 2013 Feb 24.
7
U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation.
Nature. 2010 Dec 2;468(7324):664-8. doi: 10.1038/nature09479. Epub 2010 Sep 29.
8
Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10062-7. doi: 10.1073/pnas.1000848107. Epub 2010 May 17.
10
Molecular architecture of the human pre-mRNA 3' processing complex.
Mol Cell. 2009 Feb 13;33(3):365-76. doi: 10.1016/j.molcel.2008.12.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验