Suppr超能文献

钙化性主动脉瓣疾病:第1部分——分子发病机制、血流动力学及适应性反馈

Calcific Aortic Valve Disease: Part 1--Molecular Pathogenetic Aspects, Hemodynamics, and Adaptive Feedbacks.

作者信息

Pasipoularides Ares

机构信息

Duke University School of Medicine, Durham, NC, USA.

Duke/NSF Research Center for Emerging Cardiovascular Technologies, Durham, NC, USA.

出版信息

J Cardiovasc Transl Res. 2016 Apr;9(2):102-18. doi: 10.1007/s12265-016-9679-z. Epub 2016 Feb 18.

Abstract

Aortic valvular stenosis (AVS), produced by calcific aortic valve disease (CAVD) causing reduced cusp opening, afflicts mostly older persons eventually requiring valve replacement. CAVD had been considered "degenerative," but newer investigations implicate active mechanisms similar to atherogenesis--genetic predisposition and signaling pathways, lipoprotein deposits, chronic inflammation, and calcification/osteogenesis. Consequently, CAVD may eventually be controlled/reversed by lifestyle and pharmacogenomics remedies. Its management should be comprehensive, embracing not only the valve but also the left ventricle and the arterial system with their interdependent morphomechanics/hemodynamics, which underlie the ensuing diastolic and systolic LV dysfunction. Compared to even a couple of decades ago, we now have an increased appreciation of genomic and cytomolecular pathogenetic mechanisms underlying CAVD. Future pluridisciplinary studies will characterize better and more completely its pathobiology, evolution, and overall dynamics, encompassing intricate feedback processes involving specific signaling molecules and gene network cascades. They will herald more effective, personalized medicine treatments of CAVD/AVS.

摘要

钙化性主动脉瓣疾病(CAVD)导致瓣叶开口减小,进而引发主动脉瓣狭窄(AVS),该病主要影响老年人,最终往往需要进行瓣膜置换。CAVD曾被认为是“退行性”疾病,但最新研究表明其发病机制与动脉粥样硬化相似,涉及遗传易感性和信号通路、脂蛋白沉积、慢性炎症以及钙化/骨化等活跃过程。因此,CAVD最终可能通过生活方式和药物基因组学疗法得到控制或逆转。对其治疗应全面综合,不仅要关注瓣膜,还要考虑左心室和动脉系统及其相互依存的形态力学/血流动力学,这些因素是随后发生的左心室舒张和收缩功能障碍的基础。与几十年前相比,我们现在对CAVD潜在的基因组和细胞分子发病机制有了更深入的认识。未来的多学科研究将更全面、更准确地描述其病理生物学、演变过程和整体动态变化,包括涉及特定信号分子和基因网络级联的复杂反馈过程。这些研究将为CAVD/AVS带来更有效、个性化的药物治疗方法。

相似文献

1
Calcific Aortic Valve Disease: Part 1--Molecular Pathogenetic Aspects, Hemodynamics, and Adaptive Feedbacks.
J Cardiovasc Transl Res. 2016 Apr;9(2):102-18. doi: 10.1007/s12265-016-9679-z. Epub 2016 Feb 18.
3
The progression of calcific aortic valve disease through injury, cell dysfunction, and disruptive biologic and physical force feedback loops.
Cardiovasc Pathol. 2013 Jan-Feb;22(1):1-8. doi: 10.1016/j.carpath.2012.06.005. Epub 2012 Jul 12.
4
Increased Calcific Aortic Valve Disease in response to a diabetogenic, procalcific diet in the LDLrApoB mouse model.
Cardiovasc Pathol. 2018 May-Jun;34:28-37. doi: 10.1016/j.carpath.2018.02.002. Epub 2018 Feb 15.
5
A novel mouse model of aortic valve stenosis induced by direct wire injury.
Arterioscler Thromb Vasc Biol. 2014 Feb;34(2):270-8. doi: 10.1161/ATVBAHA.113.302610. Epub 2013 Dec 5.
6
Inflammatory and metabolic mechanisms underlying the calcific aortic valve disease.
Atherosclerosis. 2018 Oct;277:60-65. doi: 10.1016/j.atherosclerosis.2018.08.029. Epub 2018 Aug 25.
7
Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification.
Arterioscler Thromb Vasc Biol. 2016 Jul;36(7):1398-405. doi: 10.1161/ATVBAHA.116.307526. Epub 2016 May 19.
8
Early development of calcific aortic valve disease and left ventricular hypertrophy in a mouse model of combined dyslipidemia and type 2 diabetes mellitus.
Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2283-91. doi: 10.1161/ATVBAHA.114.304205. Epub 2014 Aug 14.

引用本文的文献

2
Advances in Pathophysiological Mechanisms of Degenerative Aortic Valve Disease.
Cardiol Res. 2025 Apr;16(2):86-101. doi: 10.14740/cr2012. Epub 2025 Feb 18.
4
Native bicuspid aortic valve thrombus in a patient with an ascending aorta aneurysm: A case report.
Heliyon. 2023 Jul 20;9(8):e18463. doi: 10.1016/j.heliyon.2023.e18463. eCollection 2023 Aug.
5
CircRNA/lncRNA-miRNA-mRNA network and gene landscape in calcific aortic valve disease.
BMC Genomics. 2023 Jul 25;24(1):419. doi: 10.1186/s12864-023-09441-y.
6
Biofunctionalization of decellularized porcine aortic valve with OPG-loaded PCL nanoparticles for anti-calcification.
RSC Adv. 2019 Apr 16;9(21):11882-11893. doi: 10.1039/c9ra00408d. eCollection 2019 Apr 12.
7
Pathogenesis and Molecular Immune Mechanism of Calcified Aortic Valve Disease.
Front Cardiovasc Med. 2021 Dec 23;8:765419. doi: 10.3389/fcvm.2021.765419. eCollection 2021.
8
Adding a "Notch" to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach.
Front Cell Dev Biol. 2021 Aug 30;9:695114. doi: 10.3389/fcell.2021.695114. eCollection 2021.
10
Genetics in bicuspid aortic valve disease: Where are we?
Prog Cardiovasc Dis. 2020 Jul-Aug;63(4):398-406. doi: 10.1016/j.pcad.2020.06.005. Epub 2020 Jun 27.

本文引用的文献

1
Linking Genes to Cardiovascular Diseases: Gene Action and Gene-Environment Interactions.
J Cardiovasc Transl Res. 2015 Dec;8(9):506-27. doi: 10.1007/s12265-015-9658-9. Epub 2015 Nov 6.
2
Calcification in Aortic Stenosis: The Skeleton Key.
J Am Coll Cardiol. 2015 Aug 4;66(5):561-77. doi: 10.1016/j.jacc.2015.05.066.
3
Innate and Adaptive Immunity in Calcific Aortic Valve Disease.
J Immunol Res. 2015;2015:851945. doi: 10.1155/2015/851945. Epub 2015 May 3.
5
Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 2.
J Cardiovasc Transl Res. 2015 Jul;8(5):293-318. doi: 10.1007/s12265-015-9630-8. Epub 2015 May 14.
7
Development of paradoxical low-flow, low-gradient severe aortic stenosis.
Heart. 2015 Jul;101(13):1015-23. doi: 10.1136/heartjnl-2014-306838. Epub 2015 Mar 20.
9
Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 1.
J Cardiovasc Transl Res. 2015 Feb;8(1):76-87. doi: 10.1007/s12265-015-9611-y. Epub 2015 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验