Lu Hongying, Zhao Xiao, Wang Yongze, Ding Xiaoren, Wang Jinhua, Garza Erin, Manow Ryan, Iverson Andrew, Zhou Shengde
Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan, 430068, P. R. China.
Department of Biological Sciences, Northern Illinois University, DeKalb, IL, 60115, USA.
BMC Biotechnol. 2016 Feb 19;16:19. doi: 10.1186/s12896-016-0248-y.
A thermal tolerant stereo-complex poly-lactic acid (SC-PLA) can be made by mixing Poly-D-lactic acid (PDLA) and poly-L-lactic acid (PLLA) at a defined ratio. This environmentally friendly biodegradable polymer could replace traditional recalcitrant petroleum-based plastics. To achieve this goal, however, it is imperative to produce optically pure lactic acid isomers using a cost-effective substrate such as cellulosic biomass. The roadblock of this process is that: 1) xylose derived from cellulosic biomass is un-fermentable by most lactic acid bacteria; 2) the glucose effect results in delayed and incomplete xylose fermentation. An alternative strain devoid of the glucose effect is needed to co-utilize both glucose and xylose for improved D-lactic acid production using a cellulosic biomass substrate.
A previously engineered L-lactic acid Escherichia coli strain, WL204 (ΔfrdBC ΔldhA ΔackA ΔpflB ΔpdhR ::pflBp6-acEF-lpd ΔmgsA ΔadhE, ΔldhA::ldhL), was reengineered for production of D-lactic acid, by replacing the recombinant L-lactate dehydrogenase gene (ldhL) with a D-lactate dehydrogenase gene (ldhA). The glucose effect (catabolite repression) of the resulting strain, JH13, was eliminated by deletion of the ptsG gene which encodes for IIBC(glc) (a PTS enzyme for glucose transport). The derived strain, JH14, was metabolically evolved through serial transfers in screw-cap tubes containing glucose. The evolved strain, JH15, regained improved anaerobic cell growth using glucose. In fermentations using a mixture of glucose (50 g L(-1)) and xylose (50 g L(-1)), JH15 co-utilized both glucose and xylose, achieving an average sugar consumption rate of 1.04 g L(-1)h(-1), a D-lactic acid titer of 83 g L(-1), and a productivity of 0.86 g L(-1) h(-1). This result represents a 46 % improved sugar consumption rate, a 26 % increased D-lactic acid titer, and a 48 % enhanced productivity, compared to that achieved by JH13.
These results demonstrated that JH15 has the potential for fermentative production of D-lactic acid using cellulosic biomass derived substrates, which contain a mixture of C6 and C5 sugars.
通过将聚-D-乳酸(PDLA)和聚-L-乳酸(PLLA)按特定比例混合,可制备出耐热性立体复合聚乳酸(SC-PLA)。这种环保型可生物降解聚合物能够替代传统的难降解石油基塑料。然而,要实现这一目标,必须使用具有成本效益的底物(如纤维素生物质)来生产光学纯的乳酸异构体。该过程的障碍在于:1)源自纤维素生物质的木糖大多数乳酸菌无法发酵;2)葡萄糖效应导致木糖发酵延迟且不完全。需要一种不存在葡萄糖效应的替代菌株,以共同利用葡萄糖和木糖,从而使用纤维素生物质底物提高D-乳酸的产量。
通过将重组L-乳酸脱氢酶基因(ldhL)替换为D-乳酸脱氢酶基因(ldhA),对先前构建的L-乳酸大肠杆菌菌株WL204(ΔfrdBC ΔldhA ΔackA ΔpflB ΔpdhR ::pflBp6-acEF-lpd ΔmgsA ΔadhE,ΔldhA::ldhL)进行改造,用于生产D-乳酸。通过缺失编码IIBC(glc)(一种葡萄糖转运的磷酸转移酶系统酶)的ptsG基因,消除了所得菌株JH13的葡萄糖效应(分解代谢物阻遏)。通过在含有葡萄糖的螺口管中连续传代,对衍生菌株JH14进行代谢进化。进化后的菌株JH15在使用葡萄糖时恢复了厌氧细胞生长。在使用葡萄糖(50 g L⁻¹)和木糖(50 g L⁻¹)混合物的发酵中,JH15共同利用了葡萄糖和木糖,平均糖消耗速率为1.04 g L⁻¹h⁻¹,D-乳酸产量为83 g L⁻¹,生产力为0.86 g L⁻¹ h⁻¹。与JH13相比,该结果表明糖消耗速率提高了46%,D-乳酸产量增加了26%,生产力提高了48%。
这些结果表明,JH15具有利用含有C6和C5糖混合物的纤维素生物质衍生底物发酵生产D-乳酸的潜力。