Suppr超能文献

隐花色素的节律性表达通过精氨酸加压素信号传导诱导无节律性视交叉上核的昼夜节律时钟。

Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling.

作者信息

Edwards Mathew D, Brancaccio Marco, Chesham Johanna E, Maywood Elizabeth S, Hastings Michael H

机构信息

Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.

Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom

出版信息

Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2732-7. doi: 10.1073/pnas.1519044113. Epub 2016 Feb 22.

Abstract

Circadian rhythms in mammals are coordinated by the suprachiasmatic nucleus (SCN). SCN neurons define circadian time using transcriptional/posttranslational feedback loops (TTFL) in which expression of Cryptochrome (Cry) and Period (Per) genes is inhibited by their protein products. Loss of Cry1 and Cry2 stops the SCN clock, whereas individual deletions accelerate and decelerate it, respectively. At the circuit level, neuronal interactions synchronize cellular TTFLs, creating a spatiotemporal wave of gene expression across the SCN that is lost in Cry1/2-deficient SCN. To interrogate the properties of CRY proteins required for circadian function, we expressed CRY in SCN of Cry-deficient mice using adeno-associated virus (AAV). Expression of CRY1::EGFP or CRY2::EGFP under a minimal Cry1 promoter was circadian and rapidly induced PER2-dependent bioluminescence rhythms in previously arrhythmic Cry1/2-deficient SCN, with periods appropriate to each isoform. CRY1::EGFP appropriately lengthened the behavioral period in Cry1-deficient mice. Thus, determination of specific circadian periods reflects properties of the respective proteins, independently of their phase of expression. Phase of CRY1::EGFP expression was critical, however, because constitutive or phase-delayed promoters failed to sustain coherent rhythms. At the circuit level, CRY1::EGFP induced the spatiotemporal wave of PER2 expression in Cry1/2-deficient SCN. This was dependent on the neuropeptide arginine vasopressin (AVP) because it was prevented by pharmacological blockade of AVP receptors. Thus, our genetic complementation assay reveals acute, protein-specific induction of cell-autonomous and network-level circadian rhythmicity in SCN never previously exposed to CRY. Specifically, Cry expression must be circadian and appropriately phased to support rhythms, and AVP receptor signaling is required to impose circuit-level circadian function.

摘要

哺乳动物的昼夜节律由视交叉上核(SCN)协调。SCN神经元利用转录/翻译后反馈回路(TTFL)来确定昼夜时间,在该回路中,隐花色素(Cry)和周期(Per)基因的表达受到其蛋白质产物的抑制。Cry1和Cry2的缺失会使SCN时钟停止,而单个基因的缺失则分别使其加速和减速。在回路水平上,神经元相互作用使细胞TTFL同步,在整个SCN中产生基因表达的时空波,而在Cry1/2缺陷的SCN中这种波消失。为了探究昼夜节律功能所需的CRY蛋白的特性,我们使用腺相关病毒(AAV)在Cry缺陷小鼠的SCN中表达CRY。在最小Cry1启动子下CRY1::EGFP或CRY2::EGFP的表达具有昼夜节律性,并在先前无节律的Cry1/2缺陷SCN中迅速诱导依赖PER2的生物发光节律,其周期与每种异构体相适应。CRY1::EGFP适当延长了Cry1缺陷小鼠的行为周期。因此,特定昼夜周期的确定反映了各自蛋白质的特性,与其表达阶段无关。然而,CRY1::EGFP表达的阶段至关重要,因为组成型或相位延迟的启动子无法维持连贯的节律。在回路水平上,CRY1::EGFP在Cry1/2缺陷的SCN中诱导了PER2表达的时空波。这依赖于神经肽精氨酸加压素(AVP),因为AVP受体的药理学阻断可阻止这种现象。因此,我们的基因互补试验揭示了在从未接触过CRY的SCN中,细胞自主和网络水平的昼夜节律性的急性、蛋白质特异性诱导。具体而言,Cry表达必须具有昼夜节律性且相位适当以支持节律,并且需要AVP受体信号传导来赋予回路水平的昼夜节律功能。

相似文献

1
Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling.
Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2732-7. doi: 10.1073/pnas.1519044113. Epub 2016 Feb 22.
2
Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12388-E12397. doi: 10.1073/pnas.1811438115. Epub 2018 Nov 28.
4
Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators.
PLoS One. 2012;7(6):e38985. doi: 10.1371/journal.pone.0038985. Epub 2012 Jun 11.
6
Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability.
J Neurosci. 2017 Aug 16;37(33):7824-7836. doi: 10.1523/JNEUROSCI.0691-17.2017. Epub 2017 Jul 11.
8
Cry1-/- circadian rhythmicity depends on SCN intercellular coupling.
J Biol Rhythms. 2012 Dec;27(6):443-52. doi: 10.1177/0748730412461246.

引用本文的文献

2
Rescue of Comorbid Behavioral and Metabolic Phenotypes of Arrhythmic Mice by Restoring Circadian Expression in the Suprachiasmatic Nucleus.
Biol Psychiatry Glob Open Sci. 2023 Jul 1;3(4):632-641. doi: 10.1016/j.bpsgos.2023.06.002. eCollection 2023 Oct.
3
Mutational Study of the Tryptophan Tetrad Important for Electron Transfer in European Robin Cryptochrome 4a.
ACS Omega. 2023 Jul 12;8(29):26425-26436. doi: 10.1021/acsomega.3c02963. eCollection 2023 Jul 25.
4
expression during postnatal development is critical for the establishment of normal circadian period.
Front Neurosci. 2023 Jun 14;17:1166137. doi: 10.3389/fnins.2023.1166137. eCollection 2023.
5
SIK3-HDAC4 in the suprachiasmatic nucleus regulates the timing of arousal at the dark onset and circadian period in mice.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2218209120. doi: 10.1073/pnas.2218209120. Epub 2023 Mar 6.
6
Chrono-communication and cardiometabolic health: The intrinsic relationship and therapeutic nutritional promises.
Front Endocrinol (Lausanne). 2022 Sep 13;13:975509. doi: 10.3389/fendo.2022.975509. eCollection 2022.
7
Cryptochrome 1 as a state variable of the circadian clockwork of the suprachiasmatic nucleus: Evidence from translational switching.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2203563119. doi: 10.1073/pnas.2203563119. Epub 2022 Aug 17.
8
Mathematical Modeling in Circadian Rhythmicity.
Methods Mol Biol. 2022;2482:55-80. doi: 10.1007/978-1-0716-2249-0_4.
9
It's About Time: The Circadian Network as Time-Keeper for Cognitive Functioning, Locomotor Activity and Mental Health.
Front Physiol. 2022 Apr 25;13:873237. doi: 10.3389/fphys.2022.873237. eCollection 2022.

本文引用的文献

3
Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons.
Neuron. 2013 Nov 20;80(4):973-83. doi: 10.1016/j.neuron.2013.08.022.
4
Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length.
J Biol Chem. 2013 Dec 6;288(49):35277-86. doi: 10.1074/jbc.M113.509604. Epub 2013 Oct 24.
5
Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag.
Science. 2013 Oct 4;342(6154):85-90. doi: 10.1126/science.1238599.
6
Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse.
Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9547-52. doi: 10.1073/pnas.1220894110. Epub 2013 May 20.
7
A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus.
Neuron. 2013 May 22;78(4):714-28. doi: 10.1016/j.neuron.2013.03.011. Epub 2013 Apr 25.
10
Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function.
J Biol Chem. 2012 Jul 27;287(31):25917-26. doi: 10.1074/jbc.M112.368001. Epub 2012 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验