Suppr超能文献

果蝇中双向脂滴运动的时间控制取决于驱动蛋白-1及其辅助因子Halo的比例。

Temporal control of bidirectional lipid-droplet motion in Drosophila depends on the ratio of kinesin-1 and its co-factor Halo.

作者信息

Arora Gurpreet K, Tran Susan L, Rizzo Nicholas, Jain Ankit, Welte Michael A

机构信息

Department of Biology, University of Rochester, Rochester, NY, USA.

Department of Biology, University of Rochester, Rochester, NY, USA Department of Biology, Brandeis University, Waltham, MA, USA.

出版信息

J Cell Sci. 2016 Apr 1;129(7):1416-28. doi: 10.1242/jcs.183426. Epub 2016 Feb 18.

Abstract

During bidirectional transport, individual cargoes move continuously back and forth along microtubule tracks, yet the cargo population overall displays directed net transport. How such transport is controlled temporally is not well understood. We analyzed this issue for bidirectionally moving lipid droplets in Drosophila embryos, a system in which net transport direction is developmentally controlled. By quantifying how the droplet distribution changes as embryos develop, we characterize temporal transitions in net droplet transport and identify the crucial contribution of the previously identified, but poorly characterized, transacting regulator Halo. In particular, we find that Halo is transiently expressed; rising and falling Halo levels control the switches in global distribution. Rising Halo levels have to pass a threshold before net plus-end transport is initiated. This threshold level depends on the amount of the motor kinesin-1: the more kinesin-1 is present, the more Halo is needed before net plus-end transport commences. Because Halo and kinesin-1 are present in common protein complexes, we propose that Halo acts as a rate-limiting co-factor of kinesin-1.

摘要

在双向运输过程中,单个货物沿着微管轨道不断地来回移动,但货物总体上表现出定向净运输。这种运输在时间上是如何被控制的,目前还不太清楚。我们针对果蝇胚胎中双向移动的脂滴分析了这个问题,在这个系统中,净运输方向是受发育控制的。通过量化随着胚胎发育脂滴分布如何变化,我们表征了脂滴净运输的时间转变,并确定了先前已鉴定但特征描述不佳的反式作用调节因子Halo的关键作用。具体而言,我们发现Halo是瞬时表达的;Halo水平的上升和下降控制着全局分布的切换。在启动净正端运输之前,上升的Halo水平必须超过一个阈值。这个阈值水平取决于驱动蛋白-1的量:驱动蛋白-1存在的越多,在净正端运输开始之前所需的Halo就越多。由于Halo和驱动蛋白-1存在于共同的蛋白质复合物中,我们提出Halo作为驱动蛋白-1的限速辅助因子发挥作用。

相似文献

2
A determinant for directionality of organelle transport in Drosophila embryos.
Curr Biol. 2003 Sep 30;13(19):1660-8. doi: 10.1016/j.cub.2003.08.032.
3
Regulation of lipid-droplet transport by the perilipin homolog LSD2.
Curr Biol. 2005 Jul 26;15(14):1266-75. doi: 10.1016/j.cub.2005.06.062.
4
Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets.
Cell. 2008 Dec 12;135(6):1098-107. doi: 10.1016/j.cell.2008.10.021.
5
A bidirectional kinesin motor in live Drosophila embryos.
Traffic. 2005 Nov;6(11):1036-46. doi: 10.1111/j.1600-0854.2005.00343.x.
6
Endogenous GSK-3/shaggy regulates bidirectional axonal transport of the amyloid precursor protein.
Traffic. 2013 Mar;14(3):295-308. doi: 10.1111/tra.12037. Epub 2013 Jan 20.
7
Drosophila PAT1 is required for Kinesin-1 to transport cargo and to maximize its motility.
Development. 2010 Aug;137(16):2763-72. doi: 10.1242/dev.048108. Epub 2010 Jul 14.
8
Role of kinesin-1-based microtubule sliding in Drosophila nervous system development.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E4985-94. doi: 10.1073/pnas.1522416113. Epub 2016 Aug 10.
9
As the fat flies: The dynamic lipid droplets of Drosophila embryos.
Biochim Biophys Acta. 2015 Sep;1851(9):1156-85. doi: 10.1016/j.bbalip.2015.04.002. Epub 2015 Apr 13.
10
Quantum-dot-assisted characterization of microtubule rotations during cargo transport.
Nat Nanotechnol. 2008 Sep;3(9):552-6. doi: 10.1038/nnano.2008.216. Epub 2008 Aug 10.

引用本文的文献

1
LncRNA Facilitates Lipid Deposition by Promoting the Ubiquitination of MYH9 in Chicken LMH Cells.
Int J Mol Sci. 2024 Sep 25;25(19):10316. doi: 10.3390/ijms251910316.
2
Drosophila embryos allocate lipid droplets to specific lineages to ensure punctual development and redox homeostasis.
PLoS Genet. 2023 Aug 14;19(8):e1010875. doi: 10.1371/journal.pgen.1010875. eCollection 2023 Aug.
3
Drosophila embryos spatially sort their nutrient stores to facilitate their utilization.
Development. 2023 Oct 15;150(20). doi: 10.1242/dev.201423. Epub 2023 Mar 17.
4
ARP2/3 Regulates Fatty Acid Synthesis by Modulating Lipid Droplets' Motility.
Int J Mol Sci. 2022 Aug 5;23(15):8730. doi: 10.3390/ijms23158730.
5
Mitochondrial morphology and activity regulate furrow ingression and contractile ring dynamics in cellularization.
Mol Biol Cell. 2020 Oct 1;31(21):2331-2347. doi: 10.1091/mbc.E20-03-0177. Epub 2020 Aug 5.
6
Spastin mutations impair coordination between lipid droplet dispersion and reticulum.
PLoS Genet. 2020 Apr 21;16(4):e1008665. doi: 10.1371/journal.pgen.1008665. eCollection 2020 Apr.
7
Lipid droplet motility and organelle contacts.
Contact (Thousand Oaks). 2019 Jan-Dec;2. doi: 10.1177/2515256419895688. Epub 2019 Dec 16.
8
SILAC-based quantitative proteomic analysis of gastrula stage embryos mutant for fibroblast growth factor signalling.
Fly (Austin). 2020 Mar-Dec;14(1-4):10-28. doi: 10.1080/19336934.2019.1705118. Epub 2019 Dec 24.
9
Wolbachia and host germline components compete for kinesin-mediated transport to the posterior pole of the Drosophila oocyte.
PLoS Pathog. 2018 Aug 15;14(8):e1007216. doi: 10.1371/journal.ppat.1007216. eCollection 2018 Aug.

本文引用的文献

1
Right Time, Right Place: Probing the Functions of Organelle Positioning.
Trends Cell Biol. 2016 Feb;26(2):121-134. doi: 10.1016/j.tcb.2015.10.001. Epub 2015 Nov 2.
3
As the fat flies: The dynamic lipid droplets of Drosophila embryos.
Biochim Biophys Acta. 2015 Sep;1851(9):1156-85. doi: 10.1016/j.bbalip.2015.04.002. Epub 2015 Apr 13.
4
Bidirectional cargo transport: moving beyond tug of war.
Nat Rev Mol Cell Biol. 2014 Sep;15(9):615-28. doi: 10.1038/nrm3853. Epub 2014 Aug 16.
5
Mitochondrial trafficking and anchoring in neurons: New insight and implications.
J Cell Biol. 2014 Mar 31;204(7):1087-98. doi: 10.1083/jcb.201312123.
6
A conserved role for Snail as a potentiator of active transcription.
Genes Dev. 2014 Jan 15;28(2):167-81. doi: 10.1101/gad.230953.113. Epub 2014 Jan 8.
7
Motor domain phosphorylation modulates kinesin-1 transport.
J Biol Chem. 2013 Nov 8;288(45):32612-32621. doi: 10.1074/jbc.M113.515510. Epub 2013 Sep 26.
8
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Nucleic Acids Res. 2013 Jan 7;41(1):518-32. doi: 10.1093/nar/gks1032. Epub 2012 Nov 3.
9
Lipid droplets control the maternal histone supply of Drosophila embryos.
Curr Biol. 2012 Nov 20;22(22):2104-13. doi: 10.1016/j.cub.2012.09.018. Epub 2012 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验