Suppr超能文献

一氧化碳气体并非惰性,而是全球性的,它对细菌基因表达、铁摄取和抗生素耐药性都有影响。

Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance.

机构信息

1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom .

2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom .

出版信息

Antioxid Redox Signal. 2016 Jun 10;24(17):1013-28. doi: 10.1089/ars.2015.6501. Epub 2016 Mar 30.

Abstract

AIMS

Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression.

RESULTS

We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA-the response regulator-is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity.

INNOVATION

This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically.

CONCLUSION

This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013-1028.

摘要

目的

一氧化碳是一种呼吸毒物和气体信号分子。虽然一氧化碳释放分子(CORMs)在哺乳动物中具有时间和空间特异性地释放 CO,并已被证明具有抗菌作用,但我们并不了解 CO 毒性的模式。我们的目的是探索 CO 气体本身(不干预 CORMs)对细菌生理学和基因表达的影响。

结果

我们使用严格控制的恒化器条件和整合的转录组数据集与统计建模相结合,揭示了 CO 的全局影响。CO 已知会抑制细菌呼吸,我们发现通过全局调节剂 Fnr、Arc 和 PdhR,能量转换途径的基因表达受到显著影响。在需氧条件下,ArcA-响应调节剂-会被短暂磷酸化,丙酮酸积累,模拟无氧状态。涉及铁摄取、硫氨基酸和精氨酸代谢的基因均受到干扰。通过转录因子 Fur 的活性调节证实了与全局铁相关的变化,这可能是铁载体排泄增加、细胞内铁池减少以及 CO 挑战细菌对金属螯合剂敏感的基础。虽然 CO 气体(与 H2S 和 NO 不同)几乎不能提供抗生素保护,但钌 CORM 是抗生素活性的有效佐剂。

创新点

这是首次详细探索细菌对 CO 的全局反应,揭示了具有治疗性使用 CORMs 潜力的意想不到的靶标。

结论

这项工作揭示了细菌对 CO 的复杂反应,并为理解 CORMs、血红素加氧酶活性或环境来源的 CO 的影响提供了基础。抗氧化。氧化还原信号。24,1013-1028。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6df/4921903/13a42c78f550/fig-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验