Matilla Miguel A, Nogellova Veronika, Morel Bertrand, Krell Tino, Salmond George P C
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada, 18008, Spain.
Environ Microbiol. 2016 Nov;18(11):3635-3650. doi: 10.1111/1462-2920.13241. Epub 2016 May 25.
Infections due to multidrug-resistant bacteria represent a major global health challenge. To combat this problem, new antibiotics are urgently needed and some plant-associated bacteria are a promising source. The rhizobacterium Serratia plymuthica A153 produces several bioactive secondary metabolites, including the anti-oomycete and antifungal haterumalide, oocydin A and the broad spectrum polyamine antibiotic, zeamine. In this study, we show that A153 produces a second broad spectrum antibiotic, andrimid. Using genome sequencing, comparative genomics and mutagenesis, we defined new genes involved in andrimid (adm) biosynthesis. Both the expression of the adm gene cluster and regulation of andrimid synthesis were investigated. The biosynthetic cluster is operonic and its expression is modulated by various environmental cues, including temperature and carbon source. Analysis of the genome context of the adm operon revealed a gene encoding a predicted LysR-type regulator, AdmX, apparently unique to Serratia strains. Mutagenesis and gene expression assays demonstrated that AdmX is a transcriptional activator of the adm gene cluster. At the post-transcriptional level, the expression of the adm cluster is positively regulated by the RNA chaperone, Hfq, in an RpoS-independent manner. Our results highlight the complexity of andrimid biosynthesis - an antibiotic with potential clinical and agricultural utility.
多重耐药菌感染是全球主要的健康挑战。为应对这一问题,迫切需要新型抗生素,而一些与植物相关的细菌是很有前景的来源。根际细菌粘质沙雷氏菌A153能产生多种生物活性次生代谢产物,包括抗卵菌和抗真菌的海特鲁马利德、卵杀菌素A以及广谱多胺抗生素玉米胺。在本研究中,我们发现A153能产生第二种广谱抗生素安迪米德。通过基因组测序、比较基因组学和诱变,我们确定了参与安迪米德(adm)生物合成的新基因。我们对adm基因簇的表达和安迪米德合成的调控进行了研究。生物合成簇是操纵子结构,其表达受包括温度和碳源在内的各种环境信号调节。对adm操纵子的基因组背景分析揭示了一个编码预测的LysR型调节因子AdmX的基因,该基因显然是沙雷氏菌菌株所特有的。诱变和基因表达分析表明,AdmX是adm基因簇的转录激活因子。在转录后水平,adm簇的表达由RNA伴侣Hfq以不依赖RpoS的方式正向调控。我们的结果凸显了安迪米德生物合成的复杂性——这是一种具有潜在临床和农业应用价值的抗生素。