Suppr超能文献

用于HIV动态中时变衰减率的具有偏态分布的混合效应模型。

Mixed-Effects Models with Skewed Distributions for Time-Varying Decay Rate in HIV Dynamics.

作者信息

Chen Ren, Huang Yangxin

机构信息

Department of Epidemiology & Biostatistics, College of Public Health, University of South Florida, Tampa, FL 33612, USA.

出版信息

Commun Stat Simul Comput. 2016;45(2):737-757. doi: 10.1080/03610918.2013.873129. Epub 2014 Jun 23.

Abstract

After initiation of treatment, HIV viral load has multiphasic changes, which indicates that the viral decay rate is a time-varying process. Mixed-effects models with different time-varying decay rate functions have been proposed in literature. However, there are two unresolved critical issues: (i) it is not clear which model is more appropriate for practical use, and (ii) the model random errors are commonly assumed to follow a normal distribution, which may be unrealistic and can obscure important features of within- and among-subject variations. Because asymmetry of HIV viral load data is still noticeable even after transformation, it is important to use a more general distribution family that enables the unrealistic normal assumption to be relaxed. We developed skew-elliptical (SE) Bayesian mixed-effects models by considering the model random errors to have an SE distribution. We compared the performance among five SE models that have different time-varying decay rate functions. For each model, we also contrasted the performance under different model random error assumption such as normal, Student-t, skew-normal or skew-t distribution. Two AIDS clinical trial data sets were used to illustrate the proposed models and methods. The results indicate that the model with a time-varying viral decay rate that has two exponential components is preferred. Among the four distribution assumptions, the skew-t and skew-normal models provided better fitting to the data than normal or Student-t model, suggesting that it is important to assume a model with a skewed distribution in order to achieve reasonable results when the data exhibit skewness.

摘要

治疗开始后,HIV病毒载量呈现多相变化,这表明病毒衰减率是一个随时间变化的过程。文献中已经提出了具有不同时变衰减率函数的混合效应模型。然而,有两个尚未解决的关键问题:(i)尚不清楚哪种模型更适合实际应用;(ii)通常假设模型随机误差服从正态分布,这可能不现实,并且可能掩盖个体内部和个体之间变异的重要特征。由于即使经过变换,HIV病毒载量数据的不对称性仍然很明显,因此使用更一般的分布族很重要,这样可以放宽不现实的正态假设。我们通过考虑模型随机误差具有SE分布来开发偏态椭圆(SE)贝叶斯混合效应模型。我们比较了具有不同时变衰减率函数的五个SE模型之间的性能。对于每个模型,我们还对比了在不同模型随机误差假设下的性能,如正态、学生t分布、偏态正态或偏态t分布。使用两个艾滋病临床试验数据集来说明所提出的模型和方法。结果表明,具有两个指数成分的时变病毒衰减率模型是首选。在四种分布假设中,偏态t分布和偏态正态模型比正态或学生t分布模型对数据的拟合更好,这表明当数据呈现偏态时,为了获得合理的结果,假设一个具有偏态分布的模型很重要。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验