Suppr超能文献

用于通过电刺激再生视神经的聚吡咯/石墨烯排列纳米纤维电极

Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation.

作者信息

Yan Lu, Zhao Bingxin, Liu Xiaohong, Li Xuan, Zeng Chao, Shi Haiyan, Xu Xiaoxue, Lin Tong, Dai Liming, Liu Yong

机构信息

Lab of Nanoscale Biosensing and Bioimaging, Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University , Wenzhou, Zhejiang 325027, China.

Institute for Frontier Materials, Deakin University , Waurn Ponds, Victoria 3216, Australia.

出版信息

ACS Appl Mater Interfaces. 2016 Mar 23;8(11):6834-40. doi: 10.1021/acsami.5b12843. Epub 2016 Mar 9.

Abstract

The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes.

摘要

视神经损伤会导致永久性视野丧失以及诸如青光眼等不可逆的眼部疾病。视神经损伤主要源于视网膜神经节细胞(RGCs)的萎缩、凋亡或死亡。尽管在电子视网膜植入物方面已取得一些进展,即可以通过电刺激RGCs或视网膜的未受损部分来传递信号,但尚未实现对RGCs的刺激使其自我修复/再生。RGCs电刺激再生发展的关键挑战在于选择具有足够安全电荷注入极限(Q(inj),即电化学电容)的刺激电极。大多数传统电极往往具有较低的Q(inj)值。在此,我们首次通过一种简便而高效的聚合增强球磨法合成了聚吡咯功能化石墨烯(PPy-G)。该技术不仅能有效引入电子受体氮以增强电容,还保留了用于电荷传输的导电平台——π-π共轭碳平面。随后制备了基于PPy-G的排列纳米纤维用于RGCs的引导生长和电刺激(ES)。电刺激后观察到RGCs的活力、神经突生长和抗衰老能力显著增强,这表明通过在合适的纳米电极上进行电刺激实现视神经再生具有可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验