Suppr超能文献

通过心肌细胞增殖构建和重塑心脏。

Building and re-building the heart by cardiomyocyte proliferation.

作者信息

Foglia Matthew J, Poss Kenneth D

机构信息

Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.

Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA

出版信息

Development. 2016 Mar 1;143(5):729-40. doi: 10.1242/dev.132910.

Abstract

The adult human heart does not regenerate significant amounts of lost tissue after injury. Rather than making new, functional muscle, human hearts are prone to scarring and hypertrophy, which can often lead to fatal arrhythmias and heart failure. The most-cited basis of this ineffective cardiac regeneration in mammals is the low proliferative capacity of adult cardiomyocytes. However, mammalian cardiomyocytes can avidly proliferate during fetal and neonatal development, and both adult zebrafish and neonatal mice can regenerate cardiac muscle after injury, suggesting that latent regenerative potential exists. Dissecting the cellular and molecular mechanisms that promote cardiomyocyte proliferation throughout life, deciphering why proliferative capacity normally dissipates in adult mammals, and deriving means to boost this capacity are primary goals in cardiovascular research. Here, we review our current understanding of how cardiomyocyte proliferation is regulated during heart development and regeneration.

摘要

成年人类心脏在受伤后无法大量再生失去的组织。人类心脏不会生成新的功能性肌肉,而是容易形成瘢痕和肥大,这常常会导致致命的心律失常和心力衰竭。哺乳动物心脏再生无效最常被提及的原因是成年心肌细胞的增殖能力较低。然而,哺乳动物的心肌细胞在胎儿和新生儿发育期间能够快速增殖,成年斑马鱼和新生小鼠在受伤后都能再生心肌,这表明潜在的再生能力是存在的。剖析促进心肌细胞终生增殖的细胞和分子机制,解读成年哺乳动物增殖能力为何通常会消失,并找到增强这种能力的方法,是心血管研究的主要目标。在此,我们综述了目前对心脏发育和再生过程中心肌细胞增殖调控方式的理解。

相似文献

1
Building and re-building the heart by cardiomyocyte proliferation.
Development. 2016 Mar 1;143(5):729-40. doi: 10.1242/dev.132910.
2
Mechanisms of Cardiac Regeneration.
Dev Cell. 2016 Feb 22;36(4):362-74. doi: 10.1016/j.devcel.2016.01.018.
3
Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations.
Am J Physiol Heart Circ Physiol. 2015 Oct;309(8):H1237-50. doi: 10.1152/ajpheart.00559.2015. Epub 2015 Sep 4.
4
Cardiomyocyte proliferation in zebrafish and mammals: lessons for human disease.
Cell Mol Life Sci. 2017 Apr;74(8):1367-1378. doi: 10.1007/s00018-016-2404-x. Epub 2016 Nov 3.
5
Polyploidy in Cardiomyocytes: Roadblock to Heart Regeneration?
Circ Res. 2020 Feb 14;126(4):552-565. doi: 10.1161/CIRCRESAHA.119.315408. Epub 2020 Feb 13.
7
Regulation of cardiomyocyte proliferation during development and regeneration.
Dev Growth Differ. 2014 Jun;56(5):402-9. doi: 10.1111/dgd.12134. Epub 2014 Apr 16.
8
Features of cardiomyocyte proliferation and its potential for cardiac regeneration.
J Cell Mol Med. 2008 Dec;12(6A):2233-44. doi: 10.1111/j.1582-4934.2008.00439.x. Epub 2008 Jul 26.
9
Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes.
Nature. 2010 Mar 25;464(7288):601-5. doi: 10.1038/nature08804.
10
A dual epimorphic and compensatory mode of heart regeneration in zebrafish.
Dev Biol. 2015 Mar 1;399(1):27-40. doi: 10.1016/j.ydbio.2014.12.002. Epub 2014 Dec 31.

引用本文的文献

2
Neural signaling contributes to heart formation and growth in the invertebrate chordate, .
bioRxiv. 2025 May 2:2025.04.28.651085. doi: 10.1101/2025.04.28.651085.
3
The role of deubiquitinases in cardiovascular diseases: mechanisms and therapeutic implications.
Front Cardiovasc Med. 2025 May 1;12:1582049. doi: 10.3389/fcvm.2025.1582049. eCollection 2025.
7
Cardiomyocyte proliferation and regeneration in congenital heart disease.
Pediatr Discov. 2024 Sep;2(3). doi: 10.1002/pdi3.2501. Epub 2024 Aug 12.
8
Continuous live imaging reveals a subtle pathological alteration with cell behaviors in congenital heart malformation.
Fundam Res. 2021 Dec 3;2(1):14-22. doi: 10.1016/j.fmre.2021.11.025. eCollection 2022 Jan.
10
[Not Available].
Mater Today Bio. 2023 Dec 30;24:100939. doi: 10.1016/j.mtbio.2023.100939. eCollection 2024 Feb.

本文引用的文献

1
No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice.
Cell. 2015 Nov 5;163(4):1026-36. doi: 10.1016/j.cell.2015.10.035.
2
Cardiomyocytes Replicate and their Numbers Increase in Young Hearts.
Cell. 2015 Nov 5;163(4):783-4. doi: 10.1016/j.cell.2015.10.038.
3
Cardiomyocyte Cell-Cycle Activity during Preadolescence.
Cell. 2015 Nov 5;163(4):781-2. doi: 10.1016/j.cell.2015.10.037.
4
Tissue-Specific Cell Cycle Indicator Reveals Unexpected Findings for Cardiac Myocyte Proliferation.
Circ Res. 2016 Jan 8;118(1):20-8. doi: 10.1161/CIRCRESAHA.115.307697. Epub 2015 Oct 15.
5
Myocardial NF-κB activation is essential for zebrafish heart regeneration.
Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13255-60. doi: 10.1073/pnas.1511209112. Epub 2015 Oct 15.
6
Harnessing the microRNA pathway for cardiac regeneration.
J Mol Cell Cardiol. 2015 Dec;89(Pt A):68-74. doi: 10.1016/j.yjmcc.2015.09.017. Epub 2015 Sep 30.
7
Epicardial FSTL1 reconstitution regenerates the adult mammalian heart.
Nature. 2015 Sep 24;525(7570):479-85. doi: 10.1038/nature15372. Epub 2015 Sep 16.
8
Telomerase Is Essential for Zebrafish Heart Regeneration.
Cell Rep. 2015 Sep 8;12(10):1691-703. doi: 10.1016/j.celrep.2015.07.064. Epub 2015 Aug 28.
9
Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.
Dev Cell. 2015 Aug 24;34(4):387-99. doi: 10.1016/j.devcel.2015.06.017. Epub 2015 Aug 6.
10
Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart.
Nature. 2015 Jul 9;523(7559):226-30. doi: 10.1038/nature14582. Epub 2015 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验