State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China.
Science. 2016 Mar 4;351(6277):1065-8. doi: 10.1126/science.aaf1835.
Although considerable progress has been made in direct synthesis gas (syngas) conversion to light olefins (C2(=)-C4(=)) via Fischer-Tropsch synthesis (FTS), the wide product distribution remains a challenge, with a theoretical limit of only 58% for C2-C4 hydrocarbons. We present a process that reaches C2(=)-C4(=) selectivity as high as 80% and C2-C4 94% at carbon monoxide (CO) conversion of 17%. This is enabled by a bifunctional catalyst affording two types of active sites with complementary properties. The partially reduced oxide surface (ZnCrO(x)) activates CO and H2, and C-C coupling is subsequently manipulated within the confined acidic pores of zeolites. No obvious deactivation is observed within 110 hours. Furthermore, this composite catalyst and the process may allow use of coal- and biomass-derived syngas with a low H2/CO ratio.
尽管通过费托合成(Fischer-Tropsch synthesis,FTS)将直接合成气(syngas)转化为低碳烯烃(C2(=)-C4(=))已经取得了相当大的进展,但产物分布广泛仍然是一个挑战,C2-C4 烃类的理论极限仅为 58%。我们提出了一种工艺,在一氧化碳(CO)转化率为 17%时,可达到高达 80%的 C2(=)-C4(=)选择性和 94%的 C2-C4。这是通过一种双功能催化剂实现的,该催化剂提供了两种具有互补性质的活性位。部分还原的氧化物表面(ZnCrO(x))激活 CO 和 H2,随后在沸石的受限酸性孔内操纵 C-C 偶联。在 110 小时内没有观察到明显的失活。此外,这种复合催化剂和工艺可以允许使用 H2/CO 比低的煤和生物质衍生的合成气。