Suppr超能文献

手动轮椅推进过程中针对个别肌肉群无力的代偿策略:一项模拟研究。

Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study.

作者信息

Slowik Jonathan S, McNitt-Gray Jill L, Requejo Philip S, Mulroy Sara J, Neptune Richard R

机构信息

Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.

Department of Biomedical Engineering, The University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, The University of Southern California, Los Angeles, CA, USA.

出版信息

Clin Biomech (Bristol). 2016 Mar;33:34-41. doi: 10.1016/j.clinbiomech.2016.02.003. Epub 2016 Feb 18.

Abstract

BACKGROUND

The considerable physical demand placed on the upper extremity during manual wheelchair propulsion is distributed among individual muscles. The strategy used to distribute the workload is likely influenced by the relative force-generating capacities of individual muscles, and some strategies may be associated with a higher injury risk than others. The objective of this study was to use forward dynamics simulations of manual wheelchair propulsion to identify compensatory strategies that can be used to overcome weakness in individual muscle groups and identify specific strategies that may increase injury risk. Identifying these strategies can provide rationale for the design of targeted rehabilitation programs aimed at preventing the development of pain and injury in manual wheelchair users.

METHODS

Muscle-actuated forward dynamics simulations of manual wheelchair propulsion were analyzed to identify compensatory strategies in response to individual muscle group weakness using individual muscle mechanical power and stress as measures of upper extremity demand.

FINDINGS

The simulation analyses found the upper extremity to be robust to weakness in any single muscle group as the remaining groups were able to compensate and restore normal propulsion mechanics. The rotator cuff muscles experienced relatively high muscle stress levels and exhibited compensatory relationships with the deltoid muscles.

INTERPRETATION

These results underline the importance of strengthening the rotator cuff muscles and supporting muscles whose contributions do not increase the potential for impingement (i.e., the thoracohumeral depressors) and minimize the risk of upper extremity injury in manual wheelchair users.

摘要

背景

手动轮椅推进过程中上肢承受的巨大体力需求由各个肌肉分担。用于分配工作量的策略可能受单个肌肉相对发力能力的影响,并且一些策略可能比其他策略具有更高的受伤风险。本研究的目的是使用手动轮椅推进的正向动力学模拟来识别可用于克服单个肌肉群无力的代偿策略,并识别可能增加受伤风险的特定策略。识别这些策略可为旨在预防手动轮椅使用者疼痛和受伤的针对性康复计划的设计提供理论依据。

方法

分析手动轮椅推进的肌肉驱动正向动力学模拟,以使用单个肌肉机械功率和应力作为上肢需求的指标来识别针对单个肌肉群无力的代偿策略。

结果

模拟分析发现,由于其余肌肉群能够代偿并恢复正常推进力学,上肢对任何单个肌肉群的无力具有较强的耐受性。肩袖肌群承受相对较高的肌肉应力水平,并与三角肌表现出代偿关系。

解读

这些结果强调了加强肩袖肌群和辅助肌肉(其贡献不会增加撞击可能性的肌肉,即胸肱下压肌)的重要性,并将手动轮椅使用者上肢受伤的风险降至最低。

相似文献

1
Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study.
Clin Biomech (Bristol). 2016 Mar;33:34-41. doi: 10.1016/j.clinbiomech.2016.02.003. Epub 2016 Feb 18.
2
Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
J Biomech. 2011 Apr 29;44(7):1246-52. doi: 10.1016/j.jbiomech.2011.02.073. Epub 2011 Mar 12.
3
The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion.
J Biomech. 2010 Oct 19;43(14):2771-9. doi: 10.1016/j.jbiomech.2010.06.020. Epub 2010 Aug 2.
4
The influence of wheelchair propulsion hand pattern on upper extremity muscle power and stress.
J Biomech. 2016 Jun 14;49(9):1554-1561. doi: 10.1016/j.jbiomech.2016.03.031. Epub 2016 Mar 25.
5
The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.
Clin Biomech (Bristol). 2012 Nov;27(9):879-86. doi: 10.1016/j.clinbiomech.2012.07.002. Epub 2012 Jul 24.
6
Load on the shoulder in low intensity wheelchair propulsion.
Clin Biomech (Bristol). 2002 Mar;17(3):211-8. doi: 10.1016/s0268-0033(02)00008-6.
7
Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia.
Disabil Rehabil Assist Technol. 2014 May;9(3):213-8. doi: 10.3109/17483107.2013.775362. Epub 2013 Apr 2.
8
Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
Clin Biomech (Bristol). 2012 Mar;27(3):255-62. doi: 10.1016/j.clinbiomech.2011.10.001. Epub 2011 Nov 8.
9
Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
Proc Inst Mech Eng H. 2004;218(4):213-21. doi: 10.1243/0954411041561027.
10
The influence of verbal training and visual feedback on manual wheelchair propulsion.
Disabil Rehabil Assist Technol. 2009 Mar;4(2):86-94. doi: 10.1080/17483100802613685.

引用本文的文献

3
Handgrip Strength Cutoff Points for Functional Independence and Wheelchair Ability in Men With Spinal Cord Injury.
Top Spinal Cord Inj Rehabil. 2021 Fall;27(3):60-69. doi: 10.46292/sci20-00040. Epub 2021 Aug 13.
4
The relationship between the hand pattern used during fast wheelchair propulsion and shoulder pain development.
J Biomech. 2021 Feb 12;116:110202. doi: 10.1016/j.jbiomech.2020.110202. Epub 2020 Dec 28.
5
Shoulder magnetic resonance imaging findings in manual wheelchair users with spinal cord injury.
J Spinal Cord Med. 2022 Jul;45(4):564-574. doi: 10.1080/10790268.2020.1834774. Epub 2020 Nov 9.
6
Effects of kinematic complexity and number of muscles on musculoskeletal model robustness to muscle dysfunction.
PLoS One. 2019 Jul 24;14(7):e0219779. doi: 10.1371/journal.pone.0219779. eCollection 2019.
7
Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: A simulation study.
Comput Methods Biomech Biomed Engin. 2019 Jan;22(1):55-63. doi: 10.1080/10255842.2018.1527321. Epub 2018 Nov 6.
8
Editorial: Wheeled Mobility Biomechanics.
Front Bioeng Biotechnol. 2016 Jun 28;4:53. doi: 10.3389/fbioe.2016.00053. eCollection 2016.

本文引用的文献

1
The influence of speed and grade on wheelchair propulsion hand pattern.
Clin Biomech (Bristol). 2015 Nov;30(9):927-32. doi: 10.1016/j.clinbiomech.2015.07.007. Epub 2015 Jul 21.
3
Detailed shoulder MRI findings in manual wheelchair users with shoulder pain.
Biomed Res Int. 2014;2014:769649. doi: 10.1155/2014/769649. Epub 2014 Aug 11.
4
The influence of simulated rotator cuff tears on the risk for impingement in handbike and handrim wheelchair propulsion.
Clin Biomech (Bristol). 2013 Jun;28(5):495-501. doi: 10.1016/j.clinbiomech.2013.04.007. Epub 2013 May 9.
5
A theoretical analysis of the influence of wheelchair seat position on upper extremity demand.
Clin Biomech (Bristol). 2013 Apr;28(4):378-85. doi: 10.1016/j.clinbiomech.2013.03.004. Epub 2013 Apr 19.
6
The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.
Clin Biomech (Bristol). 2012 Nov;27(9):879-86. doi: 10.1016/j.clinbiomech.2012.07.002. Epub 2012 Jul 24.
7
Musculotendon lengths and moment arms for a three-dimensional upper-extremity model.
J Biomech. 2012 Jun 1;45(9):1739-44. doi: 10.1016/j.jbiomech.2012.03.010. Epub 2012 Apr 19.
8
Effect of choice of recovery patterns on handrim kinetics in manual wheelchair users with paraplegia and tetraplegia.
J Spinal Cord Med. 2012 May;35(3):148-55. doi: 10.1179/2045772312Y.0000000013.
10
How robust is human gait to muscle weakness?
Gait Posture. 2012 May;36(1):113-9. doi: 10.1016/j.gaitpost.2012.01.017. Epub 2012 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验