Popescu Veronica, Klaver Roel, Versteeg Adriaan, Voorn Pieter, Twisk Jos W R, Barkhof Frederik, Geurts Jeroen J G, Vrenken Hugo
Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.
Hum Brain Mapp. 2016 Jun;37(6):2223-33. doi: 10.1002/hbm.23168. Epub 2016 Mar 4.
Grey matter (GM) atrophy is a prominent aspect of multiple sclerosis pathology and an important outcome in studies. GM atrophy measurement requires accurate GM segmentation. Several methods are used in vivo for measuring GM volumes in MS, but assessing their validity in vivo remains challenging. In this postmortem study, we evaluated the correlation between postmortem MRI cortical volume or thickness and the cortical thickness measured on histological sections. Sixteen MS brains were scanned in situ using 3DT1-weighted MRI and these images were used to measure regional cortical volume using FSL-SIENAX, FreeSurfer, and SPM, and regional cortical thickness using FreeSurfer. Subsequently, cortical thickness was measured histologically in 5 systematically sampled cortical areas. Linear regression analyses were used to evaluate the relation between MRI regional cortical volume or thickness and histological cortical thickness to determine which postprocessing technique was most valid. After correction for multiple comparisons, we observed a significant correlation with the histological cortical thickness for FSL-SIENAX cortical volume with manual editing (std. β = 0.345, adjusted R(2) = 0.105, P = 0.005), and FreeSurfer cortical volume with manual editing (std. β = 0.379, adjusted R(2) = 0.129, P = 0.003). In addition, there was a significant correlation between FreeSurfer cortical thickness with manual editing and histological cortical thickness (std. β = 0.381, adjusted R(2) = 0.130, P = 0.003). The results support the use of FSL-SIENAX and FreeSurfer in cases of severe MS pathology. Interestingly none of the methods were significant in automated mode, which supports the use of manual editing to improve the automated segmentation. Hum Brain Mapp 37:2223-2233, 2016. © 2016 Wiley Periodicals, Inc.
灰质(GM)萎缩是多发性硬化症病理学的一个突出方面,也是研究中的一个重要结果。GM萎缩测量需要准确的GM分割。有几种方法用于在体测量MS中的GM体积,但评估它们在体的有效性仍然具有挑战性。在这项尸检研究中,我们评估了尸检MRI皮质体积或厚度与组织学切片上测量的皮质厚度之间的相关性。使用3DT1加权MRI对16个MS大脑进行原位扫描,这些图像用于使用FSL-SIENAX、FreeSurfer和SPM测量区域皮质体积,并使用FreeSurfer测量区域皮质厚度。随后,在5个系统采样的皮质区域进行组织学测量皮质厚度。使用线性回归分析来评估MRI区域皮质体积或厚度与组织学皮质厚度之间的关系,以确定哪种后处理技术最有效。在进行多重比较校正后,我们观察到FSL-SIENAX皮质体积经手动编辑后与组织学皮质厚度有显著相关性(标准β = 0.345,调整后R(2) = 0.105,P = 0.005),FreeSurfer皮质体积经手动编辑后与组织学皮质厚度有显著相关性(标准β = 0.379,调整后R(2) = 0.129,P = 0.003)。此外,FreeSurfer皮质厚度经手动编辑后与组织学皮质厚度有显著相关性(标准β = 0.381,调整后R(2) = 0.130,P = 0.003)。结果支持在严重MS病理学情况下使用FSL-SIENAX和FreeSurfer。有趣的是,在自动模式下没有一种方法具有显著性,这支持使用手动编辑来改善自动分割。《人类大脑图谱》37:2223 - 2233,2016年。© 2016威利期刊公司。