Wessel Jan R
Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
Department of Neurology, Carver College of Medicine, University of Iowa, E114 Seashore Hall, Iowa City, IA, 52254, USA.
Brain Topogr. 2018 Jan;31(1):90-100. doi: 10.1007/s10548-016-0483-5. Epub 2016 Mar 8.
Temporal independent component analysis (ICA) is applied to an electrophysiological signal mixture (such as an EEG recording) to disentangle the independent neural source signals-independent components-underlying said signal mixture. When applied to scalp EEG, ICA is most commonly used either as a pre-processing step (e.g., to isolate physiological processes from non-physiological artifacts), or as a data-reduction step (i.e., to focus on one specific neural process with increased signal-to-noise ratio). However, ICA can be used in an even more powerful way that fundamentally expands the inferential utility of scalp EEG. The core assumption of EEG-ICA-namely, that individual independent components represent separable neural processes-can be leveraged to derive the following inferential logic: If a specific independent component shows activity related to multiple psychological processes within the same dataset (e.g., elicited by different experimental events), it follows that those psychological processes involve a common, non-separable neural mechanism. As such, this logic allows testing a class of hypotheses that is beyond the reach of regular EEG analyses techniques, thereby crucially increasing the inferential utility of the EEG. In the current article, this logic will be referred to as the 'common independent process identification' (CIPI) approach. This article aims to provide a tutorial into the application of this powerful approach, targeted at researchers that have a basic understanding of standard EEG analysis. Furthermore, the article aims to exemplify the usage of CIPI by outlining recent studies that successfully applied this approach to test neural theories of mental functions.
时间独立成分分析(ICA)被应用于电生理信号混合体(如脑电图记录),以解析构成该信号混合体基础的独立神经源信号——独立成分。当应用于头皮脑电图时,ICA最常用于预处理步骤(例如,从非生理性伪迹中分离出生理过程),或作为数据降维步骤(即,以提高的信噪比专注于一个特定的神经过程)。然而,ICA可以以一种更强大的方式使用,从根本上扩展头皮脑电图的推理效用。脑电图ICA的核心假设——即各个独立成分代表可分离的神经过程——可以用来推导以下推理逻辑:如果一个特定的独立成分在同一数据集中显示出与多个心理过程相关的活动(例如,由不同的实验事件引发),那么这些心理过程涉及一个共同的、不可分离的神经机制。因此,这种逻辑允许检验一类常规脑电图分析技术无法触及的假设,从而至关重要地提高了脑电图的推理效用。在本文中,这种逻辑将被称为“共同独立过程识别”(CIPI)方法。本文旨在为这种强大方法的应用提供一个教程,目标读者是对标准脑电图分析有基本了解的研究人员。此外,本文旨在通过概述最近成功应用这种方法来检验心理功能神经理论的研究,举例说明CIPI的用法。