Suppr超能文献

通过最小化预测误差进行退化语音的知觉学习。

Perceptual learning of degraded speech by minimizing prediction error.

作者信息

Sohoglu Ediz, Davis Matthew H

机构信息

Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 7EF, United Kingdom

出版信息

Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1747-56. doi: 10.1073/pnas.1523266113. Epub 2016 Mar 8.

Abstract

Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech.

摘要

人类的感知在多个时间尺度上受到过去经验的塑造。当先前的知识或期望与刺激内容相匹配时,感知会发生突然而显著的变化。这些即时效应与感知学习所特有的更长期、更渐进的改善形成对比。尽管对这两种依赖经验的现象进行了广泛研究,但关于它们是由共同的还是可分离的神经机制导致的,仍存在相当大的争议。在这里,我们使用对退化语音诱发的神经反应进行同步脑磁图和脑电图记录,来测试感知中依赖经验变化的单机制和双机制解释。当通过匹配文本获得的先验知识提高语音清晰度时,我们观察到颞上回(STG)听觉周围区域的神经活动减少。至关重要的是,感知学习后语音识别准确性的长期提高导致几乎相同的STG区域活动减少。此外,先验知识引起的短期神经变化和感知学习引起的长期神经变化在不同受试者中与学习引起的识别准确性变化幅度相关。这些对神经处理的依赖经验效应可以与听到物理上更清晰语音的神经效应区分开来,后者同样增强了感知,但增加而不是减少了STG反应。因此,观察到的先验知识和感知学习的神经效应不能归因于伴随感知增强的听觉努力的附带现象变化。相反,我们的结果支持语音感知的预测编码解释;计算模拟表明,单一机制,即预测误差最小化,如何能够驱动先验知识的即时感知效应以及对退化语音的长期感知学习。

相似文献

1
Perceptual learning of degraded speech by minimizing prediction error.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1747-56. doi: 10.1073/pnas.1523266113. Epub 2016 Mar 8.
2
Predictive Neural Computations Support Spoken Word Recognition: Evidence from MEG and Competitor Priming.
J Neurosci. 2021 Aug 11;41(32):6919-6932. doi: 10.1523/JNEUROSCI.1685-20.2021. Epub 2021 Jul 1.
3
Predictive top-down integration of prior knowledge during speech perception.
J Neurosci. 2012 Jun 20;32(25):8443-53. doi: 10.1523/JNEUROSCI.5069-11.2012.
4
Causal cortical dynamics of a predictive enhancement of speech intelligibility.
Neuroimage. 2018 Feb 1;166:247-258. doi: 10.1016/j.neuroimage.2017.10.066. Epub 2017 Nov 2.
6
Neural Prediction Errors Distinguish Perception and Misperception of Speech.
J Neurosci. 2018 Jul 4;38(27):6076-6089. doi: 10.1523/JNEUROSCI.3258-17.2018. Epub 2018 Jun 11.
7
The eye as a window to the listening brain: neural correlates of pupil size as a measure of cognitive listening load.
Neuroimage. 2014 Nov 1;101:76-86. doi: 10.1016/j.neuroimage.2014.06.069. Epub 2014 Jul 3.
8
Differential responses to spectrally degraded speech within human auditory cortex: An intracranial electrophysiology study.
Hear Res. 2019 Jan;371:53-65. doi: 10.1016/j.heares.2018.11.009. Epub 2018 Nov 22.
9
Combined effects of form- and meaning-based predictability on perceived clarity of speech.
J Exp Psychol Hum Percept Perform. 2018 Feb;44(2):277-285. doi: 10.1037/xhp0000442. Epub 2017 May 29.
10
Single-cell activity in human STG during perception of phonemes is organized according to manner of articulation.
Neuroimage. 2021 Feb 1;226:117499. doi: 10.1016/j.neuroimage.2020.117499. Epub 2020 Oct 24.

引用本文的文献

2
"What" and "When" Predictions Jointly Modulate Speech Processing.
J Neurosci. 2025 May 14;45(20):e1049242025. doi: 10.1523/JNEUROSCI.1049-24.2025.
3
Predictive acoustical processing in human cortical layers.
bioRxiv. 2025 Jan 9:2025.01.09.632099. doi: 10.1101/2025.01.09.632099.
5
Isolating Neural Signatures of Conscious Speech Perception with a No-Report Sine-Wave Speech Paradigm.
J Neurosci. 2024 Feb 21;44(8):e0145232023. doi: 10.1523/JNEUROSCI.0145-23.2023.
6
Neural tracking measures of speech intelligibility: Manipulating intelligibility while keeping acoustics unchanged.
Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2309166120. doi: 10.1073/pnas.2309166120. Epub 2023 Nov 30.
8
Perceptual Learning of Noise-Vocoded Speech Under Divided Attention.
Trends Hear. 2023 Jan-Dec;27:23312165231192297. doi: 10.1177/23312165231192297.
10
Dynamics of Functional Networks for Syllable and Word-Level Processing.
Neurobiol Lang (Camb). 2023 Mar 8;4(1):120-144. doi: 10.1162/nol_a_00089. eCollection 2023.

本文引用的文献

1
A proposed mechanism for rapid adaptation to spectrally distorted speech.
J Acoust Soc Am. 2015 Jul;138(1):44-57. doi: 10.1121/1.4922226.
2
Neural Systems Underlying Perceptual Adjustment to Non-Standard Speech Tokens.
J Mem Lang. 2014 Oct 1;76:80-93. doi: 10.1016/j.jml.2014.06.007.
3
Lexico-semantic and acoustic-phonetic processes in the perception of noise-vocoded speech: implications for cochlear implantation.
Front Syst Neurosci. 2014 Feb 25;8:18. doi: 10.3389/fnsys.2014.00018. eCollection 2014.
4
Is the auditory evoked P2 response a biomarker of learning?
Front Syst Neurosci. 2014 Feb 20;8:28. doi: 10.3389/fnsys.2014.00028. eCollection 2014.
5
Using confidence intervals in within-subject designs.
Psychon Bull Rev. 1994 Dec;1(4):476-90. doi: 10.3758/BF03210951.
6
The brain dynamics of rapid perceptual adaptation to adverse listening conditions.
J Neurosci. 2013 Jun 26;33(26):10688-97. doi: 10.1523/JNEUROSCI.4596-12.2013.
7
Top-down influences of written text on perceived clarity of degraded speech.
J Exp Psychol Hum Percept Perform. 2014 Feb;40(1):186-99. doi: 10.1037/a0033206. Epub 2013 Jun 10.
8
Whatever next? Predictive brains, situated agents, and the future of cognitive science.
Behav Brain Sci. 2013 Jun;36(3):181-204. doi: 10.1017/S0140525X12000477. Epub 2013 May 10.
9
Free energy, precision and learning: the role of cholinergic neuromodulation.
J Neurosci. 2013 May 8;33(19):8227-36. doi: 10.1523/JNEUROSCI.4255-12.2013.
10
Bias in a common EEG and MEG statistical analysis and how to avoid it.
Clin Neurophysiol. 2013 Oct;124(10):2062-3. doi: 10.1016/j.clinph.2013.03.024. Epub 2013 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验