Samary Cynthia S, Moraes Lillian, Santos Cintia L, Huhle Robert, Santos Raquel S, Ornellas Debora S, Felix Nathane S, Capelozzi Vera L, Schanaider Alberto, Pelosi Paolo, de Abreu Marcelo Gama, Rocco Patricia R M, Silva Pedro L
1Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. 2Laboratory of Experimental Surgery, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. 3Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. 4Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. 5Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil. 6Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy.
Crit Care Med. 2016 Jul;44(7):e553-62. doi: 10.1097/CCM.0000000000001611.
The biologic effects of variable ventilation may depend on the etiology of acute respiratory distress syndrome. We compared variable and conventional ventilation in experimental pulmonary and extrapulmonary acute respiratory distress syndrome.
Prospective, randomized, controlled experimental study.
University research laboratory.
Twenty-four Wistar rats.
Acute respiratory distress syndrome was induced by Escherichia coli lipopolysaccharide administered intratracheally (pulmonary acute respiratory distress syndrome, n = 12) or intraperitoneally (extrapulmonary acute respiratory distress syndrome, n = 12). After 24 hours, animals were randomly assigned to receive conventional (volume-controlled ventilation, n = 6) or variable ventilation (n = 6). Nonventilated animals (n = 4 per etiology) were used for comparison of diffuse alveolar damage, E-cadherin, and molecular biology variables. Variable ventilation was applied on a breath-to-breath basis as a sequence of randomly generated tidal volume values (n = 600; mean tidal volume = 6 mL/kg), with a 30% coefficient of variation (normal distribution). After randomization, animals were ventilated for 1 hour and lungs were removed for histology and molecular biology analysis.
Variable ventilation improved oxygenation and reduced lung elastance compared with volume-controlled ventilation in both acute respiratory distress syndrome etiologies. In pulmonary acute respiratory distress syndrome, but not in extrapulmonary acute respiratory distress syndrome, variable ventilation 1) decreased total diffuse alveolar damage (median [interquartile range]: volume-controlled ventilation, 12 [11-17] vs variable ventilation, 9 [8-10]; p < 0.01), interleukin-6 expression (volume-controlled ventilation, 21.5 [18.3-23.3] vs variable ventilation, 5.6 [4.6-12.1]; p < 0.001), and angiopoietin-2/angiopoietin-1 ratio (volume-controlled ventilation, 2.0 [1.3-2.1] vs variable ventilation, 0.7 [0.6-1.4]; p < 0.05) and increased relative angiopoietin-1 expression (volume-controlled ventilation, 0.3 [0.2-0.5] vs variable ventilation, 0.8 [0.5-1.3]; p < 0.01). In extrapulmonary acute respiratory distress syndrome, only volume-controlled ventilation increased vascular cell adhesion molecule-1 messenger RNA expression (volume-controlled ventilation, 7.7 [5.7-18.6] vs nonventilated, 0.9 [0.7-1.3]; p < 0.05). E-cadherin expression in lung tissue was reduced in volume-controlled ventilation compared with nonventilated regardless of acute respiratory distress syndrome etiology. In pulmonary acute respiratory distress syndrome, E-cadherin expression was similar in volume-controlled ventilation and variable ventilation; in extrapulmonary acute respiratory distress syndrome, however, it was higher in variable ventilation than in volume-controlled ventilation.
Variable ventilation improved lung function in both pulmonary acute respiratory distress syndrome and extrapulmonary acute respiratory distress syndrome. Variable ventilation led to more pronounced beneficial effects in biologic marker expressions in pulmonary acute respiratory distress syndrome compared with extrapulmonary acute respiratory distress syndrome but preserved E-cadherin in lung tissue only in extrapulmonary acute respiratory distress syndrome, thus suggesting lower damage to epithelial cells.
可变通气的生物学效应可能取决于急性呼吸窘迫综合征的病因。我们比较了可变通气与传统通气在实验性肺源性和肺外源性急性呼吸窘迫综合征中的效果。
前瞻性、随机、对照实验研究。
大学研究实验室。
24只Wistar大鼠。
通过气管内给予大肠杆菌脂多糖诱导急性呼吸窘迫综合征(肺源性急性呼吸窘迫综合征,n = 12)或腹腔内给予(肺外源性急性呼吸窘迫综合征,n = 12)。24小时后,将动物随机分为接受传统通气(容量控制通气,n = 6)或可变通气(n = 6)。未通气的动物(每种病因n = 4)用于比较弥漫性肺泡损伤、E-钙黏蛋白和分子生物学变量。可变通气以逐次呼吸为基础应用,作为一系列随机生成的潮气量值(n = 600;平均潮气量 = 6 mL/kg),变异系数为30%(正态分布)。随机分组后,动物通气1小时,然后取出肺组织进行组织学和分子生物学分析。
与容量控制通气相比,在两种急性呼吸窘迫综合征病因中,可变通气均改善了氧合并降低了肺弹性。在肺源性急性呼吸窘迫综合征中,而非肺外源性急性呼吸窘迫综合征中,可变通气1)降低了总弥漫性肺泡损伤(中位数[四分位间距]:容量控制通气,12[11 - 17]对比可变通气,9[8 - 10];p < 0.01)、白细胞介素-6表达(容量控制通气,21.5[18.3 - 23.3]对比可变通气,5.6[4.6 - 12.1];p < 0.001)以及血管生成素-2/血管生成素-1比值(容量控制通气,2.0[1.3 - 2.1]对比可变通气,0.7[0.6 - 1.4];p < 0.05),并增加了相对血管生成素-1表达(容量控制通气,0.3[0.2 - 0.5]对比可变通气,0.8[0.5 - 1.3];p < 0.01)。在肺外源性急性呼吸窘迫综合征中,只有容量控制通气增加了血管细胞黏附分子-1信使核糖核酸表达(容量控制通气,7.7[5.7 - 18.6]对比未通气,0.9[0.7 - 1.3];p < 0.05)。无论急性呼吸窘迫综合征病因如何,与未通气相比,容量控制通气时肺组织中的E-钙黏蛋白表达均降低。在肺源性急性呼吸窘迫综合征中,容量控制通气和可变通气时E-钙黏蛋白表达相似;然而,在肺外源性急性呼吸窘迫综合征中,可变通气时的E-钙黏蛋白表达高于容量控制通气。
可变通气在肺源性急性呼吸窘迫综合征和肺外源性急性呼吸窘迫综合征中均改善了肺功能。与肺外源性急性呼吸窘迫综合征相比,可变通气在肺源性急性呼吸窘迫综合征的生物学标志物表达方面产生了更显著的有益效果,但仅在肺外源性急性呼吸窘迫综合征中保留了肺组织中的E-钙黏蛋白,这表明对上皮细胞的损伤较小。