Suppr超能文献

[Group Lasso Penalized Classifier for Diagnosis of Diseases with Categorical Data].

作者信息

Wang Jinjia, Xue Fang

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2015 Oct;32(5):965-9.

Abstract

Six kinds of erythemato-squamous diseases have been common skin diseases, but the diagnosis of them has always been a problem. The quantitative data processing method is not suitable for erythemato-squamous data because they are categorical qualitative data. This paper proposed a new method based on group lasso penalized classification for the feature selection and classification for erythemato-squamous data with categorical qualitative data. The first categorical data of 33 dimensions were changed by the virtual code, and then 34th dimension age data were discretized and changed by the virtual code. Then the encoded data were grouped according to class group and variable group. Lastly Group Lasso penalized classification was executed. The classified accuracy of 10-fold cross validation was 98.88% ± 0.002 3%. Compared with those of other method in the literature, this new method is simpler, and better for effect and efficiency, and has stronger interpretability and stronger stability.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验