Berglund Ken, Tung Jack K, Higashikubo Bryan, Gross Robert E, Moore Christopher I, Hochgeschwender Ute
Department of Neurosurgery, Emory University, Atlanta, GA, USA.
Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Methods Mol Biol. 2016;1408:207-25. doi: 10.1007/978-1-4939-3512-3_14.
Optogenetics provides an array of elements for specific biophysical control, while designer chemogenetic receptors provide a minimally invasive method to control circuits in vivo by peripheral injection. We developed a strategy for selective regulation of activity in specific cells that integrates opto- and chemogenetic approaches, and thus allows manipulation of neuronal activity over a range of spatial and temporal scales in the same experimental animal. Light-sensing molecules (opsins) are activated by biologically produced light through luciferases upon peripheral injection of a small molecule substrate. Such luminescent opsins, luminopsins, allow conventional fiber optic use of optogenetic sensors, while at the same time providing chemogenetic access to the same sensors. We describe applications of this approach in cultured neurons in vitro, in brain slices ex vivo, and in awake and anesthetized animals in vivo.
光遗传学提供了一系列用于特定生物物理控制的元件,而设计化学遗传受体则提供了一种通过外周注射在体内控制神经回路的微创方法。我们开发了一种整合光遗传学和化学遗传学方法来选择性调节特定细胞活性的策略,从而能够在同一实验动物体内在一系列空间和时间尺度上操纵神经元活动。光感分子(视蛋白)在外周注射小分子底物后通过荧光素酶被生物产生的光激活。这种发光视蛋白,即发光视蛋白,允许光遗传传感器使用传统的光纤,同时提供对相同传感器的化学遗传访问途径。我们描述了这种方法在体外培养神经元、离体脑片以及清醒和麻醉动物体内的应用。