Suppr超能文献

锥体神经元的区域特异性特征——小鼠和恒河猴的比较研究

Area-Specific Features of Pyramidal Neurons-a Comparative Study in Mouse and Rhesus Monkey.

作者信息

Gilman Joshua P, Medalla Maria, Luebke Jennifer I

机构信息

Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.

出版信息

Cereb Cortex. 2017 Mar 1;27(3):2078-2094. doi: 10.1093/cercor/bhw062.

Abstract

A principal challenge of systems neuroscience is to understand the unique characteristics of cortical neurons and circuits that enable area- and species-specific sensory encoding, motor function, cognition, and behavior. To address this issue, we compared properties of layer 3 pyramidal neurons in 2 cortical areas that span a broad range of cortical function-primary sensory (V1), to cognitive (frontal)-in the mouse and the rhesus monkey. Hierarchical clustering and discriminant analyses of 15 physiological and 25 morphological variables revealed 2 fundamental principles. First, V1 and frontal neurons are remarkably similar with regard to nearly every property in the mouse, while the opposite is true in the monkey, with V1 and frontal neurons exhibiting significant differences in nearly every property assessed. Second, neurons within visual and frontal areas differ significantly between the mouse and the monkey. Neurons in mouse and monkey V1 are the same size, but differ in nearly every other way; mouse frontal cortical neurons are smaller than those in the monkey and also differ substantially with regard to most other properties. These findings have broad implications for understanding the differential contributions of heterogeneous neuronal types in construction of cortical microcircuitry in diverse brain areas and species.

摘要

系统神经科学的一个主要挑战是了解皮层神经元和神经回路的独特特征,这些特征能够实现特定区域和物种的感觉编码、运动功能、认知和行为。为了解决这个问题,我们比较了小鼠和恒河猴两个皮层区域中第3层锥体神经元的特性,这两个区域涵盖了广泛的皮层功能——从初级感觉(V1)到认知(额叶)。对15个生理变量和25个形态学变量进行层次聚类和判别分析,揭示了两个基本原理。第一,在小鼠中,V1神经元和额叶神经元在几乎所有特性方面都非常相似,而在猴子中则相反,V1神经元和额叶神经元在几乎所有评估的特性上都表现出显著差异。第二,小鼠和猴子的视觉区域和额叶区域内的神经元也存在显著差异。小鼠和猴子V1区的神经元大小相同,但在几乎所有其他方面都不同;小鼠额叶皮层神经元比猴子的小,并且在大多数其他特性方面也有很大差异。这些发现对于理解不同神经元类型在不同脑区和物种的皮层微电路构建中的不同贡献具有广泛的意义。

相似文献

1
Area-Specific Features of Pyramidal Neurons-a Comparative Study in Mouse and Rhesus Monkey.
Cereb Cortex. 2017 Mar 1;27(3):2078-2094. doi: 10.1093/cercor/bhw062.
2
Comparative ultrastructural features of excitatory synapses in the visual and frontal cortices of the adult mouse and monkey.
J Comp Neurol. 2017 Jun 15;525(9):2175-2191. doi: 10.1002/cne.24196. Epub 2017 Mar 26.
3
The pyramidal cell of the sensorimotor cortex of the macaque monkey: phenotypic variation.
Cereb Cortex. 2002 Oct;12(10):1071-8. doi: 10.1093/cercor/12.10.1071.
5
Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties.
J Neurophysiol. 2007 Dec;98(6):3330-40. doi: 10.1152/jn.00397.2007. Epub 2007 Sep 26.
7
Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex.
J Neurosci. 2001 May 15;21(10):3600-8. doi: 10.1523/JNEUROSCI.21-10-03600.2001.
10
Physiology and morphology of inverted pyramidal neurons in the rodent neocortex.
Neuroscience. 2013 Sep 17;248:165-79. doi: 10.1016/j.neuroscience.2013.06.004. Epub 2013 Jun 14.

引用本文的文献

3
Dysregulated calcium signaling in the aged primate association cortices: vulnerability to Alzheimer's disease neuropathology.
Front Aging Neurosci. 2025 Jul 15;17:1610350. doi: 10.3389/fnagi.2025.1610350. eCollection 2025.
4
Mean Kärger Model Water Exchange Rate in Brain.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00335. Epub 2024 Oct 25.
5
6
Perisomatic ultrastructure efficiently classifies cells in mouse cortex.
Nature. 2025 Apr;640(8058):478-486. doi: 10.1038/s41586-024-07765-7. Epub 2025 Apr 9.
7
Local changes in potassium ions regulate input integration in active dendrites.
PLoS Biol. 2024 Dec 4;22(12):e3002935. doi: 10.1371/journal.pbio.3002935. eCollection 2024 Dec.
9
Areal specializations in the morpho-electric and transcriptomic properties of primate layer 5 extratelencephalic projection neurons.
Cell Rep. 2024 Sep 24;43(9):114718. doi: 10.1016/j.celrep.2024.114718. Epub 2024 Sep 14.
10
Signatures of hierarchical temporal processing in the mouse visual system.
PLoS Comput Biol. 2024 Aug 22;20(8):e1012355. doi: 10.1371/journal.pcbi.1012355. eCollection 2024 Aug.

本文引用的文献

1
Reconstruction and Simulation of Neocortical Microcircuitry.
Cell. 2015 Oct 8;163(2):456-92. doi: 10.1016/j.cell.2015.09.029.
2
A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex.
Neuron. 2015 Oct 21;88(2):419-31. doi: 10.1016/j.neuron.2015.09.008. Epub 2015 Oct 1.
3
Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex.
Cereb Cortex. 2015 Dec;25(12):4839-53. doi: 10.1093/cercor/bhv188. Epub 2015 Aug 28.
4
Pattern and Component Motion Responses in Mouse Visual Cortical Areas.
Curr Biol. 2015 Jun 29;25(13):1759-64. doi: 10.1016/j.cub.2015.05.028. Epub 2015 Jun 11.
5
General cortical and special prefrontal connections: principles from structure to function.
Annu Rev Neurosci. 2015 Jul 8;38:269-89. doi: 10.1146/annurev-neuro-071714-033936. Epub 2015 Apr 16.
6
Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.
Front Neural Circuits. 2015 Jan 7;8:149. doi: 10.3389/fncir.2014.00149. eCollection 2014.
8
High bandwidth synaptic communication and frequency tracking in human neocortex.
PLoS Biol. 2014 Nov 25;12(11):e1002007. doi: 10.1371/journal.pbio.1002007. eCollection 2014 Nov.
9
A hierarchy of intrinsic timescales across primate cortex.
Nat Neurosci. 2014 Dec;17(12):1661-3. doi: 10.1038/nn.3862. Epub 2014 Nov 10.
10
A simulation study on the effects of dendritic morphology on layer V prefrontal pyramidal cell firing behavior.
Front Cell Neurosci. 2014 Sep 16;8:287. doi: 10.3389/fncel.2014.00287. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验