Chen Zhihong, Beck Thomas L
Department of Physics, and ‡Department of Chemistry, University of Cincinnati , Cincinnati, Ohio 45221, United States.
J Phys Chem B. 2016 Mar 31;120(12):3129-39. doi: 10.1021/acs.jpcb.6b01150. Epub 2016 Mar 22.
The chloride channel/transporter family of proteins facilitates anion transport across biological membranes. There is extensive physiological and bioinformatic evidence that the channels and transporters are closely related. Each monomer of a homodimeric CLC transport protein contains a narrow selectivity filter. Investigating the ion binding properties inside the filter is crucial for understanding key mechanistic states during ion transit. Here computer simulations are used to explore the free energies of Cl(-) ions in the binding sites of the wild-type CLC-ec1 transporter and its mutant E148A. Specifically, a local molecular field theory approach for free energy calculations is exploited to compute the absolute free energies in water and in the protein binding sites. The calculations indicate a close synergy between anion binding and protonation of the external glutamate gate. Electrostatic differences between the bacterial CLC-ec1 and eukaryotic CmCLC transporters revealed by these and other simulations help to rationalize the observed differing structures in the pore region. In addition, quantum chemical calculations on the F(-), Cl(-), and Br(-) ions in the central binding site are used to examine ion selectivity. The calculations show a significant extent of charge transfer from the ion to the nearby residues. The computed free energies, in conjunction with experimental measurements, place constraints on proposed mechanisms for the transport cycle.
蛋白质的氯离子通道/转运体家族促进阴离子跨生物膜运输。有大量生理和生物信息学证据表明这些通道和转运体密切相关。同二聚体CLC转运蛋白的每个单体都包含一个狭窄的选择性过滤器。研究过滤器内部的离子结合特性对于理解离子转运过程中的关键机制状态至关重要。在此,利用计算机模拟来探索野生型CLC-ec1转运体及其突变体E148A结合位点中Cl(-)离子的自由能。具体而言,采用一种用于自由能计算的局部分子场理论方法来计算水中和蛋白质结合位点的绝对自由能。计算结果表明阴离子结合与外部谷氨酸门的质子化之间存在紧密协同作用。这些模拟以及其他模拟揭示的细菌CLC-ec1和真核生物CmCLC转运体之间的静电差异有助于解释在孔区域观察到的不同结构。此外,对中心结合位点中的F(-)、Cl(-)和Br(-)离子进行量子化学计算以检验离子选择性。计算结果表明离子向附近残基有显著程度的电荷转移。计算得到的自由能与实验测量结果相结合,对所提出的转运循环机制施加了限制。