Suppr超能文献

癌细胞与成纤维细胞的代谢相互作用——NAD(P)H与FAD、细胞内pH值和过氧化氢之间的偶联

The metabolic interaction of cancer cells and fibroblasts - coupling between NAD(P)H and FAD, intracellular pH and hydrogen peroxide.

作者信息

Druzhkova Irina N, Shirmanova Marina V, Lukina Maria M, Dudenkova Varvara V, Mishina Nataliya M, Zagaynova Elena V

机构信息

a Nizhny Novgorod State Medical Academy , Nizhny Novgorod , Russia.

b Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod , Russia.

出版信息

Cell Cycle. 2016 May 2;15(9):1257-66. doi: 10.1080/15384101.2016.1160974.

Abstract

Alteration in the cellular energy metabolism is a principal feature of tumors. An important role in modifying cancer cell metabolism belongs to the cancer-associated fibroblasts. However, the regulation of their interaction has been poorly studied to date. In this study we monitored the metabolic status of both cell types by using the optical redox ratio and the fluorescence lifetimes of the metabolic co-factors NAD(P)H and FAD, in addition to the intracellular pH and the hydrogen peroxide levels in the cancer cells, using genetically encoded sensors. In the co-culture of human cervical carcinoma cells HeLa and human fibroblasts we observed a metabolic shift from oxidative phosphorylation toward glycolysis in cancer cells, and from glycolysis toward OXPHOS in fibroblasts, starting from Day 2 of co-culturing. The metabolic switch was accompanied by hydrogen peroxide production and slight acidification of the cytosol in the cancer cells in comparison with that of the corresponding monoculture. Therefore, our HeLa-huFb system demonstrated metabolic behavior similar to Warburg type tumors. To our knowledge, this is the first time that these 3 parameters have been investigated together in a model of tumor-stroma co-evolution. We propose that determination of the start-point of the metabolic alterations and understanding of the mechanisms of their realization can open a new ways for cancer treatment.

摘要

细胞能量代谢的改变是肿瘤的一个主要特征。癌症相关成纤维细胞在改变癌细胞代谢方面发挥着重要作用。然而,迄今为止,对它们相互作用的调控研究甚少。在本研究中,我们使用基因编码传感器,除了监测癌细胞内的pH值和过氧化氢水平外,还通过光学氧化还原比以及代谢辅助因子NAD(P)H和FAD的荧光寿命来监测这两种细胞类型的代谢状态。在人宫颈癌细胞HeLa和人成纤维细胞的共培养中,从共培养第2天开始,我们观察到癌细胞的代谢从氧化磷酸化向糖酵解转变,而成纤维细胞的代谢从糖酵解向氧化磷酸化转变。与相应的单培养相比,这种代谢转换伴随着癌细胞中过氧化氢的产生和细胞质的轻微酸化。因此,我们的HeLa-huFb系统表现出与瓦伯格型肿瘤相似的代谢行为。据我们所知,这是首次在肿瘤-基质共同进化模型中同时研究这三个参数。我们认为,确定代谢改变的起始点并了解其实现机制可为癌症治疗开辟新途径。

相似文献

3
Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis.
Biochim Biophys Acta Mol Cell Res. 2017 Mar;1864(3):604-611. doi: 10.1016/j.bbamcr.2016.12.022. Epub 2017 Jan 4.
4
Extracellular pH affects the fluorescence lifetimes of metabolic co-factors.
J Biomed Opt. 2021 May;26(5). doi: 10.1117/1.JBO.26.5.056502.
6
Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
Cytometry A. 2019 Jan;95(1):110-121. doi: 10.1002/cyto.a.23711. Epub 2019 Jan 2.
8
Metabolic cofactors NAD(P)H and FAD as potential indicators of cancer cell response to chemotherapy with paclitaxel.
Biochim Biophys Acta Gen Subj. 2018 Aug;1862(8):1693-1700. doi: 10.1016/j.bbagen.2018.04.021. Epub 2018 Apr 30.

引用本文的文献

5
Antioxidant Therapy in Cancer: Rationale and Progress.
Antioxidants (Basel). 2022 Jun 8;11(6):1128. doi: 10.3390/antiox11061128.
6
Droplet flow cytometry for single-cell analysis.
RSC Adv. 2021 Jun 14;11(34):20944-20960. doi: 10.1039/d1ra02636d. eCollection 2021 Jun 9.
9
Tracing of intracellular pH in cancer cells in response to Taxol treatment.
Cell Cycle. 2021 Aug;20(16):1540-1551. doi: 10.1080/15384101.2021.1949106. Epub 2021 Jul 25.
10
FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring.
Nanomicro Lett. 2021 Jun 3;13(1):133. doi: 10.1007/s40820-021-00653-z.

本文引用的文献

1
Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology.
Biochim Biophys Acta. 2015 Nov;1850(11):2318-28. doi: 10.1016/j.bbagen.2015.08.002. Epub 2015 Aug 8.
2
FLIM-FRET for Cancer Applications.
Curr Mol Imaging. 2014;3(2):144-161. doi: 10.2174/2211555203666141117221111.
3
Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2.
Biochim Biophys Acta. 2015 Sep;1850(9):1905-11. doi: 10.1016/j.bbagen.2015.05.001. Epub 2015 May 8.
4
In Vivo Multiphoton Microscopy of Basal Cell Carcinoma.
JAMA Dermatol. 2015 Oct;151(10):1068-74. doi: 10.1001/jamadermatol.2015.0453.
7
Fibroblast heterogeneity in the cancer wound.
J Exp Med. 2014 Jul 28;211(8):1503-23. doi: 10.1084/jem.20140692.
8
Separating NADH and NADPH fluorescence in live cells and tissues using FLIM.
Nat Commun. 2014 May 29;5:3936. doi: 10.1038/ncomms4936.
9
Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma.
PLoS One. 2014 Mar 4;9(3):e90746. doi: 10.1371/journal.pone.0090746. eCollection 2014.
10
Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer.
Cancer Res. 2013 Oct 15;73(20):6164-74. doi: 10.1158/0008-5472.CAN-13-0527.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验