Suppr超能文献

将 3D 花状分级 Cu2NiSnS4 与还原氧化石墨烯集成作为钠离子电池的先进阳极材料。

Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries.

机构信息

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, 130022, China.

Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University , Changchun 130012, China.

出版信息

ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9178-84. doi: 10.1021/acsami.6b01725. Epub 2016 Mar 30.

Abstract

Development of an anode material with high performance and low cost is crucial for implementation of next-generation Na-ion batteries (NIBs) electrode, which is proposed to meet the challenges of large scale renewable energy storage. Metal chalcogenides are considered as promising anode materials for NIBs due to their high theoretical capacity, low cost, and abundant sources. Unfortunately, their practical application in NIBs is still hindered because of low conductivity and morphological collapse caused by their volume expansion and shrinkage during Na(+) intercalation/deintercalation. To solve the daunting challenges, herein, we fabricated novel three-dimensional (3D) Cu2NiSnS4 nanoflowers (CNTSNs) as a proof-of-concept experiment using a facile and low-cost method. Furthermore, homogeneous integration with reduced graphene oxide nanosheets (RGNs) endows intrinsically insulated CNTSNs with superior electrochemical performances, including high specific capacity (up to 837 mAh g(-1)), good rate capability, and long cycling stability, which could be attributed to the unique 3D hierarchical structure providing fast ion diffusion pathway and high contact area at the electrode/electrolyte interface.

摘要

开发高性能、低成本的阳极材料对于实现下一代钠离子电池(NIB)电极至关重要,钠离子电池被提出是为了应对大规模可再生能源存储的挑战。金属硫属化物由于其高理论容量、低成本和丰富的来源,被认为是有前途的 NIB 阳极材料。不幸的是,由于其在 Na(+)嵌入/脱嵌过程中的体积膨胀和收缩导致的低导电性和形态塌陷,它们在 NIB 中的实际应用仍然受到阻碍。为了解决这些艰巨的挑战,本文采用一种简便、低成本的方法,制备了新型三维(3D)Cu2NiSnS4 纳米花(CNTSNs)作为概念验证实验。此外,与还原氧化石墨烯纳米片(RGNs)的均匀集成赋予了固有绝缘的 CNTSNs 优异的电化学性能,包括高比容量(高达 837 mAh g(-1))、良好的倍率性能和长循环稳定性,这可归因于独特的 3D 分层结构提供了快速离子扩散途径和电极/电解质界面的高接触面积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验