Bieniosek M F, Cates J W, Levin C S
Department of Radiology, Stanford University, Stanford, CA 94305, USA. Molecular Imaging Program at Stanford (MIPS), Stanford, CA 94305, USA. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
Phys Med Biol. 2016 Apr 7;61(7):2879-92. doi: 10.1088/0031-9155/61/7/2879. Epub 2016 Mar 17.
Using time of flight (ToF) measurements for positron emission tomography (PET) is an attractive avenue for increasing the signal to noise (SNR) ratio of PET images. However, achieving excellent time resolution required for high SNR gain using silicon photomultipliers (SiPM) requires many resource heavy high bandwidth readout channels. A method of multiplexing many SiPM signals into a single electronic channel would greatly simplify ToF PET systems. However, multiplexing SiPMs degrades time resolution because of added dark counts and signal shaping. In this work the relative contribution of dark counts and signal shaping to timing degradation is simulated and a baseline correction technique to mitigate the effect of multiplexing on the time resolution of analog SiPMs is simulated and experimentally verified. A charge sharing network for multiplexing is proposed and tested. Results show a full width at half maximum (FWHM) coincidence time resolution of [Formula: see text] ps for a single 3 mm × 3 mm × 20 mm LYSO scintillation crystals coupled to an array of sixteen 3 mm × 3 mm SiPMs that are multiplexed to a single timing channel (in addition to 4 position channels). A [Formula: see text] array of 3 mm × 3 mm × 20 mm LFS crystals showed an average FWHM coincidence time resolution of [Formula: see text] ps using the same timing scheme. All experiments were performed at room temperature with no thermal regulation. These results show that excellent time resolution for ToF can be achieved with a highly multiplexed analog SiPM readout.
利用飞行时间(ToF)测量进行正电子发射断层扫描(PET)是提高PET图像信噪比(SNR)的一个有吸引力的途径。然而,使用硅光电倍增管(SiPM)实现高SNR增益所需的出色时间分辨率需要许多资源密集型的高带宽读出通道。将许多SiPM信号复用为单个电子通道的方法将极大地简化ToF PET系统。然而,复用SiPM会由于增加的暗计数和信号整形而降低时间分辨率。在这项工作中,模拟了暗计数和信号整形对定时退化的相对贡献,并模拟和实验验证了一种基线校正技术,以减轻复用对模拟SiPM时间分辨率的影响。提出并测试了一种用于复用的电荷共享网络。结果显示,对于单个3毫米×3毫米×20毫米的LYSO闪烁晶体,耦合到十六个3毫米×3毫米SiPM的阵列并复用至单个定时通道(除4个位置通道外),其半高宽(FWHM)符合时间分辨率为[公式:见原文]皮秒。使用相同的定时方案,3毫米×3毫米×20毫米LFS晶体的[公式:见原文]阵列显示平均FWHM符合时间分辨率为[公式:见原文]皮秒。所有实验均在室温下进行,无温度调节。这些结果表明,通过高度复用的模拟SiPM读出可以实现出色的ToF时间分辨率。