Dym Orly, Song Wanling, Felder Clifford, Roth Esther, Shnyrov Valery, Ashani Yacov, Xu Yechun, Joosten Robbie P, Weiner Lev, Sussman Joel L, Silman Israel
Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, 76100, Israel.
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
Protein Sci. 2016 Jun;25(6):1096-114. doi: 10.1002/pro.2923. Epub 2016 Mar 28.
Structure-based drug design utilizes apoprotein or complex structures retrieved from the PDB. >57% of crystallographic PDB entries were obtained with polyethylene glycols (PEGs) as precipitant and/or as cryoprotectant, but <6% of these report presence of individual ethyleneglycol oligomers. We report a case in which ethyleneglycol oligomers' presence in a crystal structure markedly affected the bound ligand's position. Specifically, we compared the positions of methylene blue and decamethonium in acetylcholinesterase complexes obtained using isomorphous crystals precipitated with PEG200 or ammonium sulfate. The ligands' positions within the active-site gorge in complexes obtained using PEG200 are influenced by presence of ethyleneglycol oligomers in both cases bound to W84 at the gorge's bottom, preventing interaction of the ligand's proximal quaternary group with its indole. Consequently, both ligands are ∼3.0Å further up the gorge than in complexes obtained using crystals precipitated with ammonium sulfate, in which the quaternary groups make direct π-cation interactions with the indole. These findings have implications for structure-based drug design, since data for ligand-protein complexes with polyethylene glycol as precipitant may not reflect the ligand's position in its absence, and could result in selecting incorrect drug discovery leads. Docking methylene blue into the structure obtained with PEG200, but omitting the ethyleneglycols, yields results agreeing poorly with the crystal structure; excellent agreement is obtained if they are included. Many proteins display features in which precipitants might lodge. It will be important to investigate presence of precipitants in published crystal structures, and whether it has resulted in misinterpreting electron density maps, adversely affecting drug design.
基于结构的药物设计利用从蛋白质数据库(PDB)中检索到的载脂蛋白或复合物结构。超过57%的PDB晶体学条目是使用聚乙二醇(PEG)作为沉淀剂和/或冷冻保护剂获得的,但其中报告存在单个乙二醇低聚物的不到6%。我们报告了一个案例,其中晶体结构中乙二醇低聚物的存在显著影响了结合配体的位置。具体而言,我们比较了使用PEG200或硫酸铵沉淀的同晶型晶体获得的乙酰胆碱酯酶复合物中亚甲蓝和十烃季铵的位置。在使用PEG200获得的复合物中,活性位点峡谷内配体的位置在两种情况下都受到峡谷底部与W84结合的乙二醇低聚物的影响,阻止了配体近端季铵基团与其吲哚的相互作用。因此,与使用硫酸铵沉淀的晶体获得的复合物相比,这两种配体在峡谷中的位置都向上约3.0Å,在后者中季铵基团与吲哚形成直接的π-阳离子相互作用。这些发现对基于结构的药物设计具有启示意义,因为以聚乙二醇作为沉淀剂的配体-蛋白质复合物的数据可能无法反映在没有聚乙二醇时配体的位置,并可能导致选择错误的药物发现先导物。将亚甲蓝对接至使用PEG200获得的结构中,但省略乙二醇,得到的结果与晶体结构的吻合度很差;如果包括乙二醇,则吻合度极佳。许多蛋白质具有沉淀剂可能占据的特征。研究已发表晶体结构中沉淀剂的存在情况以及它是否导致对电子密度图的错误解读从而对药物设计产生不利影响将很重要。