Heskel Mary A, O'Sullivan Odhran S, Reich Peter B, Tjoelker Mark G, Weerasinghe Lasantha K, Penillard Aurore, Egerton John J G, Creek Danielle, Bloomfield Keith J, Xiang Jen, Sinca Felipe, Stangl Zsofia R, Martinez-de la Torre Alberto, Griffin Kevin L, Huntingford Chris, Hurry Vaughan, Meir Patrick, Turnbull Matthew H, Atkin Owen K
Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia; The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543;
Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia; Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN United Kingdom;
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):3832-7. doi: 10.1073/pnas.1520282113. Epub 2016 Mar 21.
Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
植物呼吸作用向大气中释放大量碳,是全球碳循环演变的主要控制因素。因此,它有可能调节因人类燃烧化石燃料而导致的气候变化程度。目前的生理模型和陆地生物圈模型都无法充分描述其短期温度响应,而且响应曲线形状上的微小差异都可能显著影响对生态系统碳释放和/或储存的估计。鉴于此,确定呼吸作用-温度响应曲线的形状是否存在可预测模式,进而确定全球范围内呼吸作用的内在温度敏感性是否存在可预测模式至关重要。通过分析一个涵盖7个生物群落、231个物种的综合数据库中的测量数据,我们证明叶片呼吸作用随温度升高的增加并不遵循常用的指数函数。相反,我们发现随着叶片变暖,其呈现出减速函数关系,这反映出对较高温度的敏感性下降,且在所有生物群落和植物功能类型中都非常一致。叶片呼吸作用温度敏感性的这种趋同表明,对植物能量代谢的温度响应存在普遍适用的控制机制,因此一个新的单一函数就能预测全球植被叶片呼吸作用的温度依赖性。这个简单的函数能够直接描述地球系统耦合模型陆地表面组成部分中的植物呼吸作用。我们的跨生物群落分析显示,这对寒冷气候中的此类通量具有重大影响,与之前的估计相比,通常预测值较低。