Zhang Tianyang, Cui Peng, Song Chaoming, Zhu Wenwu, Yang Shiqiang
Department of Computer Science and Technology, Tsinghua University, Beijing, China.
Department of Physics, University of Miami, Miami, Florida, United States of America.
PLoS One. 2016 Mar 29;11(3):e0151473. doi: 10.1371/journal.pone.0151473. eCollection 2016.
Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications.
人类活动在理解大规模社会动态中起着核心作用。有充分记录表明,个体活动模式遵循以重尾事件间隔时间分布为特征的爆发式动态。在此,我们研究了一个由5549570名用户组成的大规模在线聊天数据集,发现个体活动模式随时间尺度而变化,而现有模型仅在有限的时间尺度内近似经验观察结果。我们提出了一种新颖的方法,该方法对个体触发活动的强度率进行建模。我们证明,该模型能精确捕捉跨越五个数量级的多个时间尺度上的相应人类动态。我们的模型还允许提取以一组个体特定成分表征的活动模式的总体异质性。将我们的方法与社会互动相结合会产生广泛的影响。