Suppr超能文献

由单分散两亲性二嵌段类聚肽片晶自组装形成晶体纳米管。

Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles.

作者信息

Sun Jing, Jiang Xi, Lund Reidar, Downing Kenneth H, Balsara Nitash P, Zuckermann Ronald N

机构信息

Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;

出版信息

Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3954-9. doi: 10.1073/pnas.1517169113. Epub 2016 Mar 28.

Abstract

The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here, we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.

摘要

将序列定义的聚合物折叠并组装成精确有序的纳米结构,有望得到一类具有特定功能的明确仿生结构。已知两亲性二嵌段共聚物在水中会自组装形成各种纳米结构形态,包括球体、圆盘、圆柱体和囊泡。在所有这些情况下,组装的主要驱动力是形成一个排斥水的疏水核心,而亲水性嵌段则被溶剂化并延伸到水相中。然而,这类聚合物体系通常具有较宽的摩尔质量分布,并且缺乏通常与生物衍生聚合物相关的纯度和序列定义结构。在这里,我们证明了纯化的、单分散的两亲性二嵌段类肽,其化学性质不同的结构域在大小和形状上是一致的,它们可以表现得像分子瓦片单元,在水中自发组装成中空的结晶纳米管。这些纳米管由堆叠的多孔结晶环组成,主要通过侧链范德华相互作用结合在一起。类肽纳米管的形成没有中心疏水核心、手性、氢键网络以及静电或π-π相互作用。这些结果证明了正构烷烃和乙氧基侧链在聚合物自组装中具有显著的结构导向作用。更广泛地说,这项工作表明,柔性的、低分子量的序列定义聚合物可以作为分子瓦片单元,组装成精确的超分子结构。

相似文献

1
Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3954-9. doi: 10.1073/pnas.1517169113. Epub 2016 Mar 28.
2
Molecular Recognition Driven Bioinspired Directional Supramolecular Assembly of Amphiphilic (Macro)molecules and Proteins.
Acc Chem Res. 2021 Jun 1;54(11):2670-2682. doi: 10.1021/acs.accounts.1c00195. Epub 2021 May 20.
4
Hierarchical self-assembly of a biomimetic diblock copolypeptoid into homochiral superhelices.
J Am Chem Soc. 2010 Nov 17;132(45):16112-9. doi: 10.1021/ja106340f. Epub 2010 Oct 22.
5
Design, Synthesis, Assembly, and Engineering of Peptoid Nanosheets.
Acc Chem Res. 2016 Mar 15;49(3):379-89. doi: 10.1021/acs.accounts.5b00439. Epub 2016 Jan 7.
6
Amphiphilic Peptoid-Directed Assembly of Oligoanilines into Highly Crystalline Conducting Nanotubes.
Macromol Rapid Commun. 2022 Feb;43(4):e2100639. doi: 10.1002/marc.202100639. Epub 2022 Jan 17.
7
Aqueous self-assembly of chromophore-conjugated amphiphiles.
Phys Chem Chem Phys. 2014 Dec 28;16(48):26672-83. doi: 10.1039/c4cp03791j.
8
From supramolecular polymersomes to stimuli-responsive nano-capsules based on poly(diene-b-peptide) diblock copolymers.
Eur Phys J E Soft Matter. 2003 Jan;10(1):25-35. doi: 10.1140/epje/e2003-00006-1.
9
Programming Amphiphilic Peptoid Oligomers for Hierarchical Assembly and Inorganic Crystallization.
Acc Chem Res. 2021 Jan 5;54(1):81-91. doi: 10.1021/acs.accounts.0c00533. Epub 2020 Nov 2.
10
Hydrogen-Bonded Multifunctional Supramolecular Copolymers in Water.
Langmuir. 2015 Jul 21;31(28):7738-48. doi: 10.1021/acs.langmuir.5b01093. Epub 2015 Jul 9.

引用本文的文献

1
Cooperative Role of Mixed Solvent in the Evaporation-Induced Self-Assembly of Polypeptoid Nanocrystals.
ACS Appl Nano Mater. 2025 Jun 16;8(25):12909-12919. doi: 10.1021/acsanm.5c01381. eCollection 2025 Jun 27.
2
Sequence-defined peptoids iterative exponential growth.
Chem Sci. 2025 Apr 28. doi: 10.1039/d5sc01296a.
3
Self-assembling peptoid-based antimicrobial nanomaterials.
Nanomedicine (Lond). 2025 May;20(9):917-919. doi: 10.1080/17435889.2025.2469482. Epub 2025 Feb 23.
5
Effect of Micellar Morphology on the Temperature-Induced Structural Evolution of ABC Polypeptoid Triblock Terpolymers into Two-Compartment Hydrogel Network.
Macromolecules. 2024 Jun 28;57(14):6449-6464. doi: 10.1021/acs.macromol.4c00162. eCollection 2024 Jul 23.
6
Forming, Enzyme-Responsive Peptoid-Peptide Hydrogels: An Advanced Long-Acting Injectable Drug Delivery System.
J Am Chem Soc. 2024 Aug 7;146(31):21401-21416. doi: 10.1021/jacs.4c03751. Epub 2024 Jun 26.
7
Thermodynamic Driving Forces for the Self-Assembly of Diblock Polypeptoids.
ACS Nano. 2024 Jun 11;18(23):14917-14924. doi: 10.1021/acsnano.3c12228. Epub 2024 May 29.
8
Structural Elucidation of a Polypeptoid Chain in a Crystalline Lattice Reveals Key Morphology-Directing Role of the N-Terminus.
ACS Nano. 2023 Mar 14;17(5):4958-4970. doi: 10.1021/acsnano.2c12503. Epub 2023 Feb 23.

本文引用的文献

1
Peptoid nanosheets exhibit a new secondary-structure motif.
Nature. 2015 Oct 15;526(7573):415-20. doi: 10.1038/nature15363. Epub 2015 Oct 7.
2
Examples of Molecular Self-Assembly at Surfaces.
Adv Mater. 2015 Oct 14;27(38):5720-5. doi: 10.1002/adma.201405573. Epub 2015 Apr 14.
3
Sequence Programmable Peptoid Polymers for Diverse Materials Applications.
Adv Mater. 2015 Oct 14;27(38):5665-91. doi: 10.1002/adma.201500275. Epub 2015 Apr 8.
4
Peptide nanotubes.
Angew Chem Int Ed Engl. 2014 Jul 1;53(27):6866-81. doi: 10.1002/anie.201310006. Epub 2014 Jun 11.
5
Three-dimensional structure of P3HT assemblies in organic solvents revealed by cryo-TEM.
Nano Lett. 2014;14(4):2033-8. doi: 10.1021/nl5001967. Epub 2014 Mar 4.
6
Crystallization in sequence-defined peptoid diblock copolymers induced by microphase separation.
J Am Chem Soc. 2014 Feb 5;136(5):2070-7. doi: 10.1021/ja412123y. Epub 2014 Jan 27.
7
Self-assembly of ultralong polyion nanoladders facilitated by ionic recognition and molecular stiffness.
J Am Chem Soc. 2014 Feb 5;136(5):1942-7. doi: 10.1021/ja410443n. Epub 2014 Jan 23.
8
Nanoscale phase separation in sequence-defined peptoid diblock copolymers.
J Am Chem Soc. 2013 Sep 25;135(38):14119-24. doi: 10.1021/ja404233d. Epub 2013 Sep 16.
9
Sequence-controlled polymers.
Science. 2013 Aug 9;341(6146):1238149. doi: 10.1126/science.1238149.
10
Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution.
J Synchrotron Radiat. 2013 Jul;20(Pt 4):660-4. doi: 10.1107/S0909049513010431. Epub 2013 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验