Cleland Deidre M, Per Manolo C
CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052, Australia.
J Chem Phys. 2016 Mar 28;144(12):124108. doi: 10.1063/1.4944826.
This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF. The most accurate MAD of 3 ± 2 × 10(-3) Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10(-3) Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.
这项工作研究了实空间量子蒙特卡罗(QMC)方法在计算分子几何结构方面的准确性。我们给出了使用变分蒙特卡罗(VMC)和扩散蒙特卡罗(DMC)方法计算的30个双原子分子测试集的平衡键长。使用由具有LDA、PBE和B3LYP泛函的哈特里 - 福克(HF)和密度泛函理论(DFT)轨道构建的单行列式,以及小的多组态自洽场(MCSCF)多行列式展开,研究了不同试探波函数的影响。与实验几何结构相比,所有DMC方法的平均绝对偏差(MAD)都比HF、DFT和MCSCF的要小。使用具有小多行列式展开的DMC方法可实现最精确的MAD,为3 ± 2 × 10⁻³ Å。然而,计算效率更高的多行列式VMC方法的MAD也仅为4.0 ± 0.9 × 10⁻³ Å,这表明从相对简单的VMC算法计算出的QMC力通常可能足以获得精确的分子几何结构。