Fiore Michele, Strazewski Peter
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (Unité Mixte de Recherche 5246), Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
Life (Basel). 2016 Mar 28;6(2):17. doi: 10.3390/life6020017.
It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere) and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles.
最初的最小细胞系统是如何演变成生命起源所需的复杂程度的,目前仍不确定,但两亲性化合物在生命起源中的作用显然具有重大意义。在过去的四十年里,许多研究已经证明了两亲性分子如何在看似合理的前生物条件下合成。这些实验中的大多数还证明了如此形成的两亲物能够组装成囊泡的封闭膜,原则上,这些膜可以分隔早期地球上的第一个生物过程,包括自我复制系统的出现。为了使表现最佳的分子复制体能够进行竞争性选择,某种能够容纳它们的有界单元是必不可少的。如果没有不同隔室动态群体之间的竞争,生命本身就无法与其他不同的分子相互作用阵列或网络区分开来。在这篇综述中,我们描述了一些实验,这些实验展示了不同的前生物可用构建块如何成为形成囊泡的磷脂的前体。我们讨论了与早期地球(或其他地方)可能相似的实验条件,并考虑了用于表征合成产物的分析方法。两个简短的部分重点介绍了磷酸化剂、催化剂和偶联剂,并特别关注它们的地球化学背景。在第5节中,我们描述了诸如氰胺和尿素等缩合剂如何促进磷脂的非生物合成。我们通过思考磷脂隔室的未来研究来结束这篇综述,特别是关于包括由不同脂质两亲物组成的巨型囊泡的可进化化学系统的研究。