Suppr超能文献

基于数据和知识的基因调控网络建模:最新进展

Data- and knowledge-based modeling of gene regulatory networks: an update.

作者信息

Linde Jörg, Schulze Sylvie, Henkel Sebastian G, Guthke Reinhard

机构信息

Research Group Systems Biology / Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstr. 11a, 07745 Jena, Germany.

BioControl Jena GmbH, Wildenbruchstr. 15, 07745 Jena, Germany.

出版信息

EXCLI J. 2015 Mar 2;14:346-78. doi: 10.17179/excli2015-168. eCollection 2015.

Abstract

Gene regulatory network inference is a systems biology approach which predicts interactions between genes with the help of high-throughput data. In this review, we present current and updated network inference methods focusing on novel techniques for data acquisition, network inference assessment, network inference for interacting species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference. Furthermore, we present progress for large-scale or even full-genomic network inference as well as for small-scale condensed network inference and review advances in the evaluation of network inference methods by crowdsourcing. Finally, we reflect the current availability of data and prior knowledge sources and give an outlook for the inference of gene regulatory networks that reflect interacting species, in particular pathogen-host interactions.

摘要

基因调控网络推断是一种系统生物学方法,借助高通量数据预测基因之间的相互作用。在本综述中,我们介绍当前及更新的网络推断方法,重点关注数据采集的新技术、网络推断评估、相互作用物种的网络推断以及先验知识的整合。在源自RNA样本的cDNA的下一代测序(RNA测序)取得进展之后,我们详细讨论了其在网络推断中的应用。此外,我们介绍了大规模甚至全基因组网络推断以及小规模浓缩网络推断的进展,并回顾了通过众包评估网络推断方法的进展。最后,我们反映了当前数据和先验知识来源的可用性,并对反映相互作用物种,特别是病原体-宿主相互作用的基因调控网络推断进行了展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83e7/4817425/8962c52cc96f/EXCLI-14-346-t-001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验