Suppr超能文献

从局部场电位推断皮质变异性。

Inferring Cortical Variability from Local Field Potentials.

作者信息

Cui Yuwei, Liu Liu D, McFarland James M, Pack Christopher C, Butts Daniel A

机构信息

Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20815, and.

Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada.

出版信息

J Neurosci. 2016 Apr 6;36(14):4121-35. doi: 10.1523/JNEUROSCI.2502-15.2016.

Abstract

UNLABELLED

The responses of sensory neurons can be quite different to repeated presentations of the same stimulus. Here, we demonstrate a direct link between the trial-to-trial variability of cortical neuron responses and network activity that is reflected in local field potentials (LFPs). Spikes and LFPs were recorded with a multielectrode array from the middle temporal (MT) area of the visual cortex of macaques during the presentation of continuous optic flow stimuli. A maximum likelihood-based modeling framework was used to predict single-neuron spiking responses using the stimulus, the LFPs, and the activity of other recorded neurons. MT neuron responses were strongly linked to gamma oscillations (maximum at 40 Hz) as well as to lower-frequency delta oscillations (1-4 Hz), with consistent phase preferences across neurons. The predicted modulation associated with the LFP was largely complementary to that driven by visual stimulation, as well as the activity of other neurons, and accounted for nearly half of the trial-to-trial variability in the spiking responses. Moreover, the LFP model predictions accurately captured the temporal structure of noise correlations between pairs of simultaneously recorded neurons, and explained the variation in correlation magnitudes observed across the population. These results therefore identify signatures of network activity related to the variability of cortical neuron responses, and suggest their central role in sensory cortical function.

SIGNIFICANCE STATEMENT

The function of sensory neurons is nearly always cast in terms of representing sensory stimuli. However, recordings from visual cortex in awake animals show that a large fraction of neural activity is not predictable from the stimulus. We show that this variability is predictable given the simultaneously recorded measures of network activity, local field potentials. A model that combines elements of these signals with the stimulus processing of the neuron can predict neural responses dramatically better than current models, and can predict the structure of correlations across the cortical population. In identifying ways to understand stimulus processing in the context of ongoing network activity, this work thus provides a foundation to understand the role of sensory cortex in combining sensory and cognitive variables.

摘要

未标注

感觉神经元对同一刺激的重复呈现的反应可能会有很大不同。在这里,我们证明了皮层神经元反应的逐次试验变异性与反映在局部场电位(LFP)中的网络活动之间存在直接联系。在连续视流刺激呈现期间,使用多电极阵列从猕猴视觉皮层的颞中区(MT)记录尖峰信号和LFP。使用基于最大似然的建模框架,利用刺激、LFP和其他记录神经元的活动来预测单神经元的尖峰反应。MT神经元的反应与伽马振荡(40赫兹时最大)以及低频三角波振荡(1 - 4赫兹)密切相关,且各神经元具有一致的相位偏好。与LFP相关的预测调制在很大程度上补充了由视觉刺激以及其他神经元活动驱动的调制,并占尖峰反应中逐次试验变异性的近一半。此外,LFP模型预测准确地捕捉了同时记录的神经元对之间噪声相关性的时间结构,并解释了在整个群体中观察到的相关性大小的变化。因此,这些结果确定了与皮层神经元反应变异性相关的网络活动特征,并表明它们在感觉皮层功能中起核心作用。

意义声明

感觉神经元的功能几乎总是根据对感觉刺激的表征来描述。然而,对清醒动物视觉皮层的记录表明,很大一部分神经活动无法从刺激中预测出来。我们表明,鉴于同时记录的网络活动测量值——局部场电位,这种变异性是可预测的。一个将这些信号元素与神经元的刺激处理相结合的模型能够比当前模型显著更好地预测神经反应,并且能够预测整个皮层群体的相关性结构。在确定理解正在进行的网络活动背景下的刺激处理的方法时,这项工作因此为理解感觉皮层在整合感觉和认知变量中的作用提供了基础。

相似文献

1
Inferring Cortical Variability from Local Field Potentials.
J Neurosci. 2016 Apr 6;36(14):4121-35. doi: 10.1523/JNEUROSCI.2502-15.2016.
2
Cortical dynamics during naturalistic sensory stimulations: experiments and models.
J Physiol Paris. 2011 Jan-Jun;105(1-3):2-15. doi: 10.1016/j.jphysparis.2011.07.014. Epub 2011 Aug 31.
3
Visual Motion Discrimination by Propagating Patterns in Primate Cerebral Cortex.
J Neurosci. 2017 Oct 18;37(42):10074-10084. doi: 10.1523/JNEUROSCI.1538-17.2017. Epub 2017 Sep 14.
4
Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information.
J Neurosci. 2008 May 28;28(22):5696-709. doi: 10.1523/JNEUROSCI.0009-08.2008.
5
Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons.
PLoS Comput Biol. 2008 Dec;4(12):e1000239. doi: 10.1371/journal.pcbi.1000239. Epub 2008 Dec 12.
6
Stimulus Dependence of Correlated Variability across Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7546-56. doi: 10.1523/JNEUROSCI.0504-16.2016.
7
Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands.
J Comput Neurosci. 2010 Dec;29(3):533-45. doi: 10.1007/s10827-010-0230-y. Epub 2010 Mar 16.
8
Removal of spurious correlations between spikes and local field potentials.
J Neurophysiol. 2011 Jan;105(1):474-86. doi: 10.1152/jn.00642.2010. Epub 2010 Nov 10.
9
Response properties of local field potentials and neighboring single neurons in awake primary visual cortex.
J Neurosci. 2012 Aug 15;32(33):11396-413. doi: 10.1523/JNEUROSCI.0429-12.2012.
10
Local field potentials indicate network state and account for neuronal response variability.
J Comput Neurosci. 2010 Dec;29(3):567-79. doi: 10.1007/s10827-009-0208-9. Epub 2010 Jan 22.

引用本文的文献

2
Cortico-striatal beta oscillations as a reward-related signal.
Cogn Affect Behav Neurosci. 2024 Oct;24(5):839-859. doi: 10.3758/s13415-024-01208-6. Epub 2024 Aug 15.
4
Hierarchical VAEs provide a normative account of motion processing in the primate brain.
bioRxiv. 2023 Nov 5:2023.09.27.559646. doi: 10.1101/2023.09.27.559646.
5
Brain signatures indexing variation in internal processing during perceptual decision-making.
iScience. 2023 Aug 26;26(10):107750. doi: 10.1016/j.isci.2023.107750. eCollection 2023 Oct 20.
9
Alpha/beta power decreases track the fidelity of stimulus-specific information.
Elife. 2019 Nov 29;8:e49562. doi: 10.7554/eLife.49562.
10
Integrated open-source software for multiscale electrophysiology.
Sci Data. 2019 Oct 25;6(1):231. doi: 10.1038/s41597-019-0242-z.

本文引用的文献

1
Attention stabilizes the shared gain of V4 populations.
Elife. 2015 Nov 2;4:e08998. doi: 10.7554/eLife.08998.
2
The Nature of Shared Cortical Variability.
Neuron. 2015 Aug 5;87(3):644-56. doi: 10.1016/j.neuron.2015.06.035. Epub 2015 Jul 23.
3
Ambiguity and nonidentifiability in the statistical analysis of neural codes.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6455-60. doi: 10.1073/pnas.1506400112. Epub 2015 May 1.
4
Diverse coupling of neurons to populations in sensory cortex.
Nature. 2015 May 28;521(7553):511-515. doi: 10.1038/nature14273. Epub 2015 Apr 6.
5
State-dependent population coding in primary auditory cortex.
J Neurosci. 2015 Feb 4;35(5):2058-73. doi: 10.1523/JNEUROSCI.3318-14.2015.
6
A sensorimotor role for traveling waves in primate visual cortex.
Neuron. 2015 Feb 4;85(3):615-27. doi: 10.1016/j.neuron.2014.12.043. Epub 2015 Jan 15.
7
Cortical state determines global variability and correlations in visual cortex.
J Neurosci. 2015 Jan 7;35(1):170-8. doi: 10.1523/JNEUROSCI.4994-13.2015.
8
Sharp emergence of feature-selective sustained activity along the dorsal visual pathway.
Nat Neurosci. 2014 Sep;17(9):1255-62. doi: 10.1038/nn.3785. Epub 2014 Aug 10.
9
Partitioning neuronal variability.
Nat Neurosci. 2014 Jun;17(6):858-65. doi: 10.1038/nn.3711. Epub 2014 Apr 28.
10
State dependence of noise correlations in macaque primary visual cortex.
Neuron. 2014 Apr 2;82(1):235-48. doi: 10.1016/j.neuron.2014.02.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验