Qaraqe Marwa, Ismail Muhammad, Serpedin Erchin, Zulfi Haneef
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, USA.
Baylor Neurology Clinic, Baylor College of Medicine, 7200 Cambridge St. BCM 609, Houston, TX 77030, USA.
Epilepsy Behav. 2016 May;58:48-60. doi: 10.1016/j.yebeh.2016.02.039. Epub 2016 Apr 5.
This paper presents a novel method for seizure onset detection using fused information extracted from multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG). In existing seizure detectors, the analysis of the nonlinear and nonstationary ECG signal is limited to the time-domain or frequency-domain. In this work, heart rate variability (HRV) extracted from ECG is analyzed using a Matching-Pursuit (MP) and Wigner-Ville Distribution (WVD) algorithm in order to effectively extract meaningful HRV features representative of seizure and nonseizure states. The EEG analysis relies on a common spatial pattern (CSP) based feature enhancement stage that enables better discrimination between seizure and nonseizure features. The EEG-based detector uses logical operators to pool SVM seizure onset detections made independently across different EEG spectral bands. Two fusion systems are adopted. In the first system, EEG-based and ECG-based decisions are directly fused to obtain a final decision. The second fusion system adopts an override option that allows for the EEG-based decision to override the fusion-based decision in the event that the detector observes a string of EEG-based seizure decisions. The proposed detectors exhibit an improved performance, with respect to sensitivity and detection latency, compared with the state-of-the-art detectors. Experimental results demonstrate that the second detector achieves a sensitivity of 100%, detection latency of 2.6s, and a specificity of 99.91% for the MAJ fusion case.
本文提出了一种利用从多通道脑电图(EEG)和单通道心电图(ECG)中提取的融合信息进行癫痫发作起始检测的新方法。在现有的癫痫发作检测器中,对非线性和非平稳ECG信号的分析仅限于时域或频域。在这项工作中,使用匹配追踪(MP)和维格纳-威利分布(WVD)算法对从ECG中提取的心率变异性(HRV)进行分析,以便有效地提取代表癫痫发作和非癫痫发作状态的有意义的HRV特征。EEG分析依赖于基于共同空间模式(CSP)的特征增强阶段,该阶段能够更好地区分癫痫发作和非癫痫发作特征。基于EEG的检测器使用逻辑运算符来汇总在不同EEG频段上独立进行的支持向量机癫痫发作起始检测。采用了两种融合系统。在第一个系统中,直接融合基于EEG和基于ECG的决策以获得最终决策。第二个融合系统采用了一个覆盖选项,该选项允许在检测器观察到一系列基于EEG的癫痫发作决策时,基于EEG的决策覆盖基于融合的决策。与现有最先进的检测器相比,所提出的检测器在灵敏度和检测延迟方面表现出更好的性能。实验结果表明,对于MAJ融合情况,第二个检测器的灵敏度达到100%,检测延迟为2.6秒,特异性为99.91%。