Suppr超能文献

意大利厄尔巴岛浅水可渗透沉积物中的甲烷渗漏区蕴藏着高度多样的厌氧甲烷氧化菌群落

Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy.

作者信息

Ruff S Emil, Kuhfuss Hanna, Wegener Gunter, Lott Christian, Ramette Alban, Wiedling Johanna, Knittel Katrin, Weber Miriam

机构信息

Department for Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany; HGF MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany.

Department for Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany.

出版信息

Front Microbiol. 2016 Mar 31;7:374. doi: 10.3389/fmicb.2016.00374. eCollection 2016.

Abstract

The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g(-1) day(-1) indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20-50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct microbial habitats due to their unique biogeochemical and physical characteristics. To link AOM phylotypes with seep habitats and to enable future meta-analyses we thus propose that seep environment ontology needs to be further specified.

摘要

甲烷厌氧氧化(AOM)是调节海洋沉积物中甲烷向水圈排放的关键生物地球化学过程。AOM主要由厌氧甲烷氧化古菌(ANME)和硫酸盐还原细菌(SRB)的聚集体介导,并且主要在深海沉积物中进行了研究。在此,我们研究了位于意大利厄尔巴岛沿岸、有机碳贫乏的渗透性砂质海底12米水深处的四个地点的甲烷渗漏情况。我们结合生物地球化学测量、基于测序的群落分析和原位杂交来研究该环境中的微生物群落。碱度增加、游离硫化物的形成以及高达200 nmol g(-1) 天(-1) 的近乎化学计量的甲烷氧化和硫酸盐还原速率表明以硫酸盐为耦合的AOM占主导地位。与以扩散为主的深海渗漏相比,AOM活动带厚度达40厘米,异常大,且出现在更深的沉积层位(海底以下20 - 50厘米),这可能是由于水深较浅和砂质的渗透性导致孔隙水的平流造成的。水动力也可能是栖息在这些砂质中的AOM聚集体具有大量系统发育和前所未有的形态多样性的原因,包括ANME - 1a/b、ANME - 2a/b/c、ANME - 3进化枝及其伙伴细菌SEEP - SRB1a和SEEP - SRB2。尽管这些排放点在物理距离上很近,但高微生物扩散、多种能源的可利用性和高栖息地异质性可能解释了它们共享的微生物分类单元很少。尽管这种浅海甲烷渗漏的生物地球化学与深海渗漏有很大不同,但其关键功能分类单元却密切相关,这支持了关键分类单元的全球扩散,并强调了甲烷作为主要能源的强烈选择作用。由于其独特的生物地球化学和物理特征,浅水渗透性沉积物中的嗜温、以甲烷为燃料的生态系统可能包含不同的微生物栖息地。为了将AOM系统型与渗漏栖息地联系起来并实现未来的荟萃分析,因此我们建议进一步明确渗漏环境本体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed21/4814501/452c4b34eb6b/fmicb-07-00374-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验