Stefano George B, Challenger Sean, Kream Richard M
MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA.
Eur J Nutr. 2016 Dec;55(8):2339-2345. doi: 10.1007/s00394-016-1212-2. Epub 2016 Apr 15.
The severity of untreated or refractory diabetes mellitus has been functionally linked to elevated concentrations of free plasma glucose, clinically defined as hyperglycemia. Operationally, the pathophysiological presentations of prolonged hyperglycemia may be categorized within insulin-dependent and insulin-independent, type 1 and type 2 diabetic phenotypes, respectively. Accordingly, major areas of empirical biomedical research have focused on the elucidation of underlying mechanisms driving key cellular signaling systems that are significantly altered in patients presenting with diabetes-associated chronic hyperglycemia.
Presently, we provide a translationally oriented review of key studies evaluating the aberrant effects of hyperglycemia on two major signaling pathways linked to debilitating cellular and systemic effects via targeted disruption of mitochondrial bioenergetics: (1) advanced glycation end-products (AGEs)/and their cognate receptor for advanced glycation end-products (RAGEs), and (2) the hexosamine biosynthetic pathway (HBP).
In preclinical models, cultured vascular endothelial cells exposed to hyperglycemic glucose concentrations were observed to produce enhanced levels of reactive oxygen species (ROS) functionally linked to increased formation of AGEs and expression of their cognate RAGEs. Importantly, inhibitors of AGEs formation, mitochondrial complex II, or un-couplers of oxidative phosphorylation, were observed to significantly reduce the effects of hyperglycemia on ROS production and cellular damage, thereby establishing a critical linkage to multiple levels of mitochondrial functioning. Hyperglycemia-mediated enhancement of mitochondrial ROS/superoxide production in vascular endothelial cells has been functionally linked to the shunting of glucose into the HBP with resultant long-term activation of pro-inflammatory signaling processes. Additionally, exposure of cultured cells to hyperglycemic conditions resulted in enhanced HBP-mediated inhibition of protein subunits of mitochondrial respiratory complexes I, III, and IV, intimately associated with normative cellular bioenergetics and ATP production.
Convergent lines of evidence link chronic hyperglycemic conditions to aberrant expression of AGEs/RAGEs and HBP signaling pathways in relation to the pathophysiological formation of ROS and pro-inflammatory processes on the functional dysregulation of mitochondrial bioenergetics.
未经治疗或难治性糖尿病的严重程度在功能上与游离血浆葡萄糖浓度升高相关,临床上将其定义为高血糖。在操作上,长期高血糖的病理生理表现可分别归类为胰岛素依赖型和非胰岛素依赖型,即1型和2型糖尿病表型。因此,经验性生物医学研究的主要领域集中在阐明驱动关键细胞信号系统的潜在机制,这些机制在患有糖尿病相关慢性高血糖的患者中发生了显著改变。
目前,我们提供了一篇以转化为导向的综述,内容涉及关键研究,这些研究通过靶向破坏线粒体生物能量学来评估高血糖对两条主要信号通路的异常影响,这两条信号通路与衰弱的细胞和全身效应相关:(1)晚期糖基化终产物(AGEs)及其晚期糖基化终产物的同源受体(RAGEs),以及(2)己糖胺生物合成途径(HBP)。
在临床前模型中,观察到暴露于高血糖葡萄糖浓度的培养血管内皮细胞产生的活性氧(ROS)水平增强,这在功能上与AGEs形成增加及其同源RAGEs的表达相关。重要的是,观察到AGEs形成抑制剂、线粒体复合物II或氧化磷酸化解偶联剂可显著降低高血糖对ROS产生和细胞损伤的影响,从而建立了与线粒体功能多个水平的关键联系。血管内皮细胞中高血糖介导的线粒体ROS/超氧化物产生增强在功能上与葡萄糖分流到HBP中相关,从而导致促炎信号过程的长期激活。此外,将培养的细胞暴露于高血糖条件下会导致HBP介导的线粒体呼吸复合物I、III和IV的蛋白质亚基抑制增强,这与正常的细胞生物能量学和ATP产生密切相关。
多条证据表明,慢性高血糖状况与AGEs/RAGEs和HBP信号通路的异常表达有关,这与ROS的病理生理形成以及促炎过程对线粒体生物能量学功能失调的影响有关。